

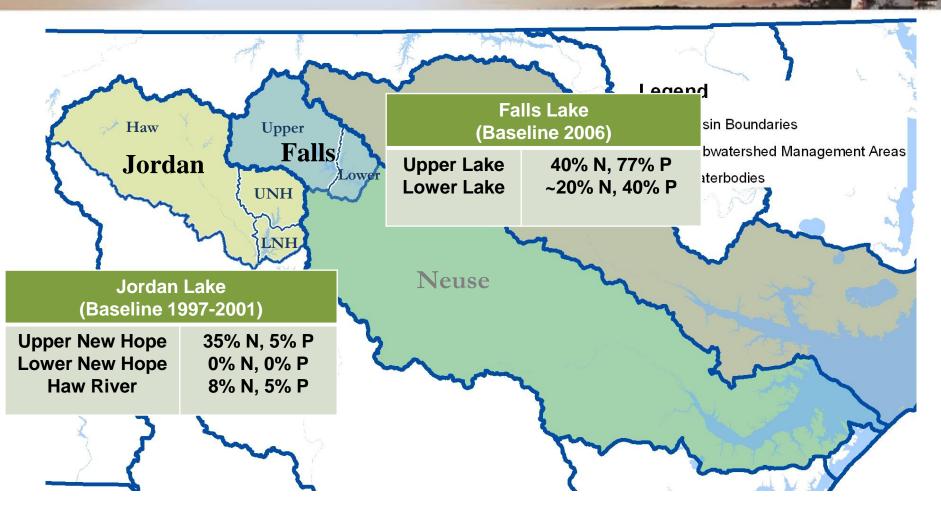
Nutrient Management

What is Nutrient Management?

- Nitrogen (N) and Phosphorous (P) are nutrients needed by all living organisms
- N & P occur naturally in the environment
- N & P are also a by-product of development
 - Wastewater discharges
 - Fertilizers
 - Stormwater runoff
- Excessive levels of N & P in aquatic environment lead to algae growth
- Water quality standard for algae in NC waters measured by Chlorophyll a levels
 - NC Chlorophyll a standard = 40 ug/l or 40 parts per billion (ppb)
- Exceedance of this Chlorophyll a standard results in "impairment" of water under federal Clean Water Act
- Impaired waters require a Total Maximum Daily Load (TMDL) to correct problem

Total Maximum Daily Load (TMDL)

- TMDL required for all impaired waters not meeting water quality standards
- Management strategy for correcting impairment
- Requires reductions in both "point" and "non-point" sources of pollution
 - Point sources Wastewater treatment plant discharge
 - Enhanced treatment technology
 - Plant upgrades
 - Nonpoint source controls
 - Stormwater runoff controls for new development
 - Buffers
 - Agricultural use of fertilizers
- TMDL required to address nutrient/chlorophyll a impairment is referred to as a "nutrient management strategy."
- 50,000 approved TMDLs in US
 - 35,000 in place for > 5 years
 - 83% achieve point source reduction targets
 - 20% achieve non-point source reduction targets



Nutrient Management in Reservoirs - Overview

- NC Waterbodies with Major Nutrient Management Strategies
 - Neuse and Tar-Pamlico Estuaries
 - Falls & Jordan Lakes
- Strategies Require Reductions from Point & Nonpoint Sources
 - Wastewater Treatment Plants
 - Agriculture
 - New Development Stormwater
 - Existing Development Stormwater (Falls & Jordan only)
 - Riparian Buffer Protection & Mitigation
- Tracking Progress
 - Annual reporting & accounting tools track implementation
 - Sampling to track water quality improvement

Nutrient Reduction Goals in Falls & Jordan Lake

(Year) = baseline period on which goals are based

Falls & Jordan - Overview

Jordan Lake Reservoir – North Carolina		Falls Lake Reservoir – North Carolina
Waterbody Size	14,000 acres	12,000 acres
Watershed Size	1,079,040 acres	492,800 acres
Impairment	Chlorophyll-a - UNH 2002 303(d) LNH, Haw 2006 303(d)	Chlorophyll-a – 2008 303(d)
Management Actions Implemented	Point Source P Reductions Agriculture Reductions	Point Source N & P Reductions New Development Stromwater Controls NCDOT New & Existing Stormwater Controls Agriculture Reductions Buffers Protection (Existing Neuse Rule)
Management Actions Pending	Point Source N Reductions New Development Controls Buffer Protection Existing Development Stormwater	Existing Development Stormwater
WQ Status	Remains impaired for Chl-a	Lower lake meeting Chl-a Standard in 2014

Falls Strategy 2010 Cost Projections

Source	Stage I Projected Costs* (2011-2020)**	Stage II Projected Costs* (2021-2036)**
Wastewater	\$315 million	\$478 million
Existing Development	\$225 million	\$551 million
Agriculture	\$5.4 – \$6.6 million	\$4.5 - \$6.1 million
New Development Stormwater	\$56 - \$109 million	\$124 - \$238 million

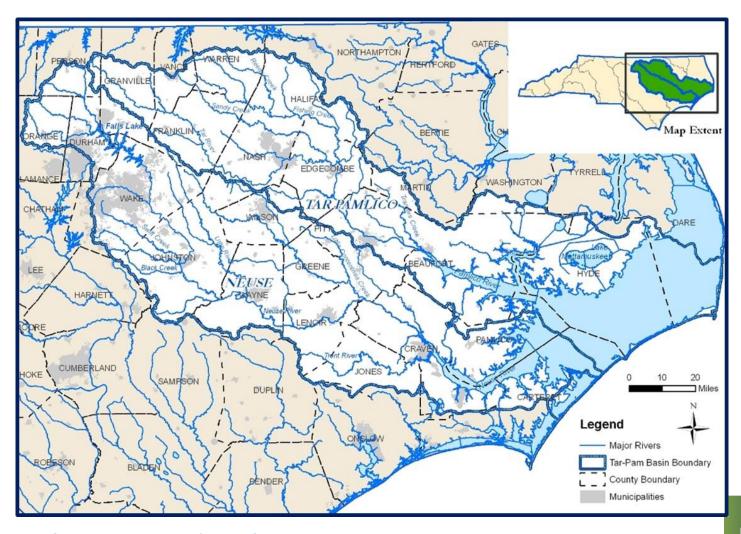
^{*}Conservative cost projections from 2010 Fiscal Note

- Actual Wastewater costs to date <u>lower</u> than projections
 - Hillsborough: \$19 million WW plant upgrade
 - Durham \$13 million WW plant upgrade
- SGWASA has achieved Stage I reductions without upgrades
 - \$30 million upgrade planned for further reductions
- Not all discharger upgrade costs related to Falls requirements

^{**} Currently working w/ UNRBA to revise end of Stage I & start of Stage II implementation dates

Jordan Cost Projections

Jordan Strategy 2007 Cost Projections


Source	Projected Costs (Total Cost)*
Wastewater	\$209 million
Existing Development	\$528 million
Buffer Protection	\$4.2 million per year
Buffer Mitigation	\$2.5 million
Agriculture	\$2.5 million
New Development Stormwater	\$480,000 per year

^{*}Conservative cost projections from 2007 Fiscal Note

- Actual Wastewater costs to date <u>lower</u> than projections
 - Total wastewater expenditure ~ \$38.6 million
- Not all discharger upgrade costs related to Jordan requirements
- No other costs incurred due to delayed implementation

Neuse & Tar-Pamlico River Basins

Neuse & Tar-Pamlico Strategies Overview

- Chl-a Impairment in both estuaries
- Nutrient management strategies for each basin
 - Address Point Sources & Nonpoint Sources: Stormwater, Ag, Buffers
- Reduction Goals
 - Neuse: 30% reduction (compared to 1991-95 baseline)
 - Tar-Pam: 30% reduction N, no increase in P (1991 baseline)
- Effective Dates
 - Neuse (1998) Achieve reduction goals within 5 yrs
 - Tar-Pamlico (2001) Achieve reduction goals within 6-9 yrs

Implementation Dates – Neuse & Tar-Pamlico

	Neuse	Tar-Pam
Nutrient Strategy Requirements	Implementation Dates	Implementation Dates
Rules Adopted (Effective Date)	1998	2001
Point Source	1997	1990*
Buffers	1998	2001
New Development Stormwater	2001	2005 / 2006
Agriculture	2001	2001
Nutrient Management Training	2000 / 2001	2005 / 2006

^{*}No WW rule in Tar-Pam. Reductions achieved under signed "Agreement" between Association of Point Sources & DWR.

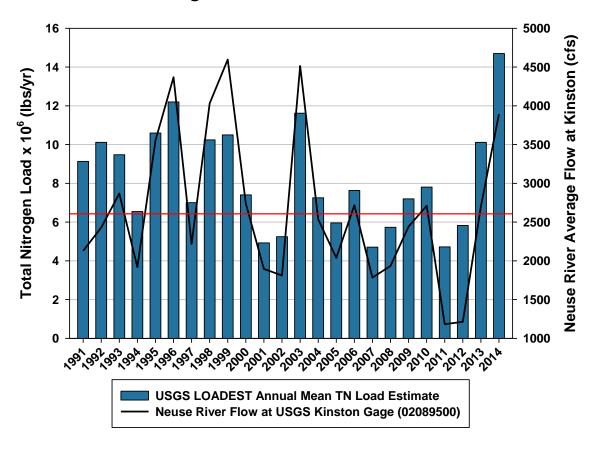
Neuse Cost Projections

Neuse Projected Costs

Source	Neuse Projected Costs (Total Cost)*
Wastewater	\$87.5 million
Buffer Protection	\$2.75 million
Agriculture	\$31 million
Nutrient Management	\$910K
New Development Stormwater	\$18.2million

^{*}Conservative cost projections from 1997 Neuse Fiscal Note

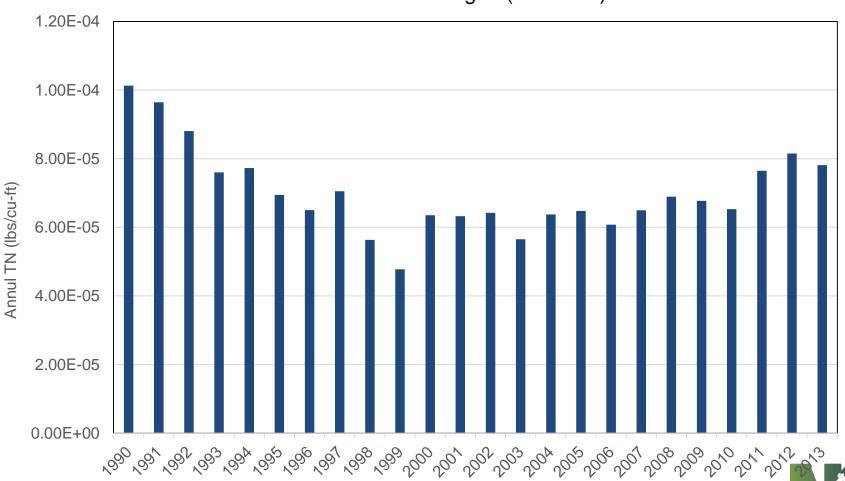
Tar-Pam Cost Projections


Tar-Pam Projected Costs

Source	Tar-Pam Projected Costs* (Annual Cost)
Buffer Protection	\$4.5 million
Agriculture	\$4.7 million
Nutrient Management	\$235K
New Development Stormwater	\$2.1 million

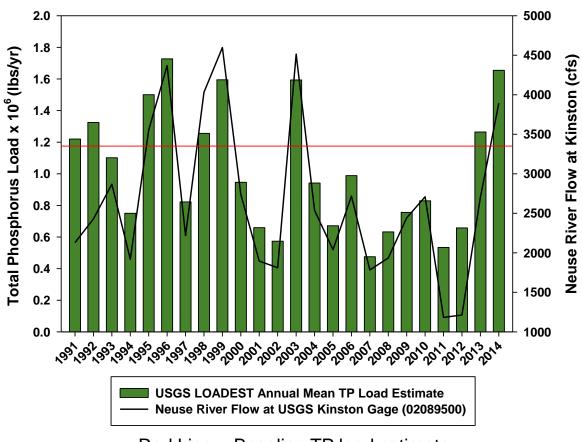
^{*}Conservative yearly cost projections from 1999 Tar-Pam Fiscal Note

Estimated Mass Nitrogen Load Delivered to Fort Barnwell



Red Line = 30% reduction of mean of baseline TN load estimate

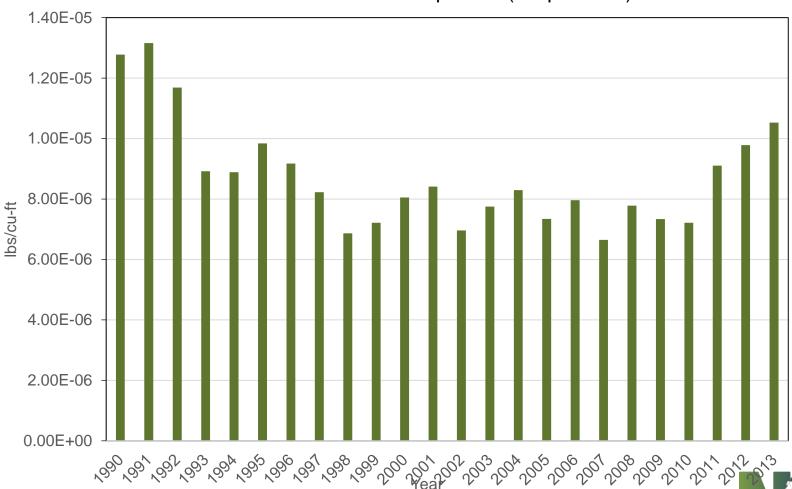
Neuse Nitrogen: Load / Flow (lbs per cubic feet)

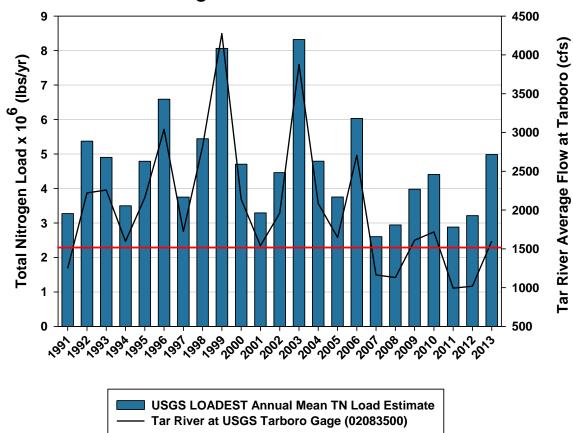

Fort Barnwell Total Nitrogen (lbs/cu. Ft)

Department of Environmental Quality

Year

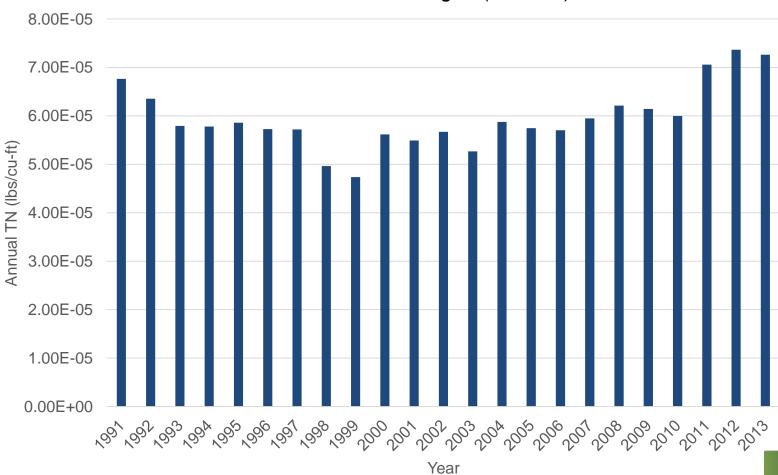
Estimated Mass Phosphorus Load Delivered to Fort Barnwell



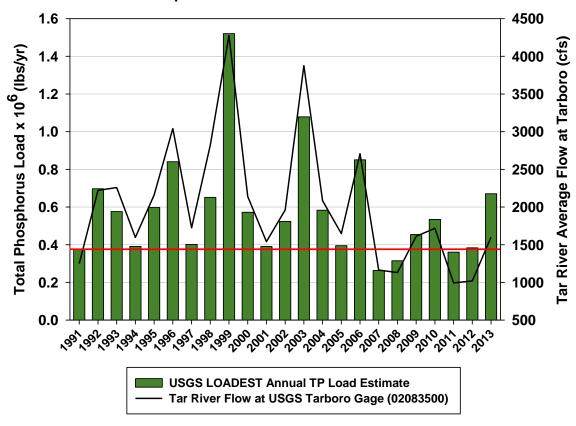

Neuse Phosphorus: Load / Flow (lbs per cubic feet)

1991 - 2013

Estimated Mass Nitrogen Load Delivered to Grimesland



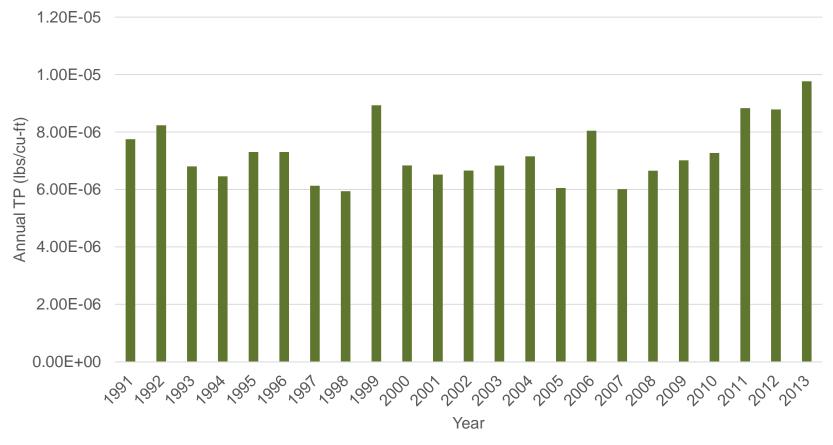
Red Line = 30% reduction of mean of baseline TN load estimate



Tar-Pam Nitrogen: Load / Flow (lbs per cubic feet)

Grimesland Annual Nitrogen (lbs/cu-ft)

Estimated Mass Phosphorus Load Delivered to Grimesland



Red Line = Baseline TP load estimate

Tar-Pam Phosphorus: Load / Flow (lbs per cubic feet)

Grimesland Annual Phosphorus (lbs/cu-ft)

Questions Moving Forward

- Do measures/technology/scientific understanding exist to resolve nutrient management issues in large reservoirs and estuaries?
- How to effectively deal with non-point sources?
- Is there a better way?
- Utilization of additional measures?
- Examples of success that NC can replicate?

