Basis for Request: Needed Supply

- Projected need in 2035 = 42.5 MGD (Ave. Day)
- Under DNER rules, new plan is required when demand = 80 percent of supply. The argument by K-C was that the 80 percent rule meant the supply was inadequate when demand = 0.8 x supply. Therefore

0.8 x Requested Supply = 42.5 Requested Supply = 53 MGD (Ave. Day)

Shortfall

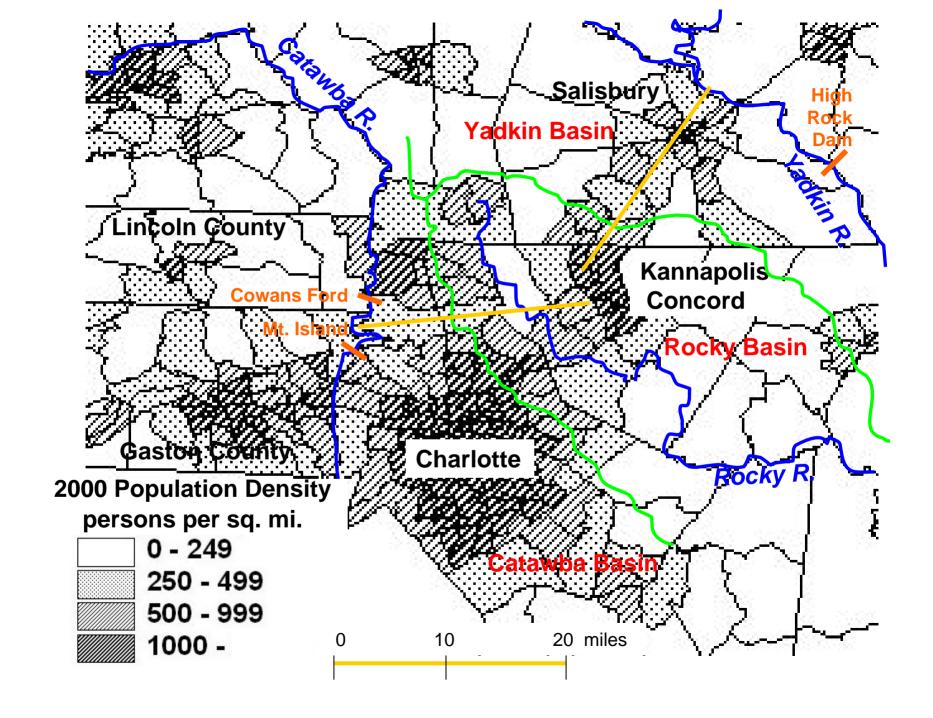
- Requested supply = 53 MGD Avg. Day
- Existing within-basin supply = 31 MGD
- Shortfall = 22 MGD Average Day
- Max Day = 1.6 Average Day
- 36 MGD maximum day

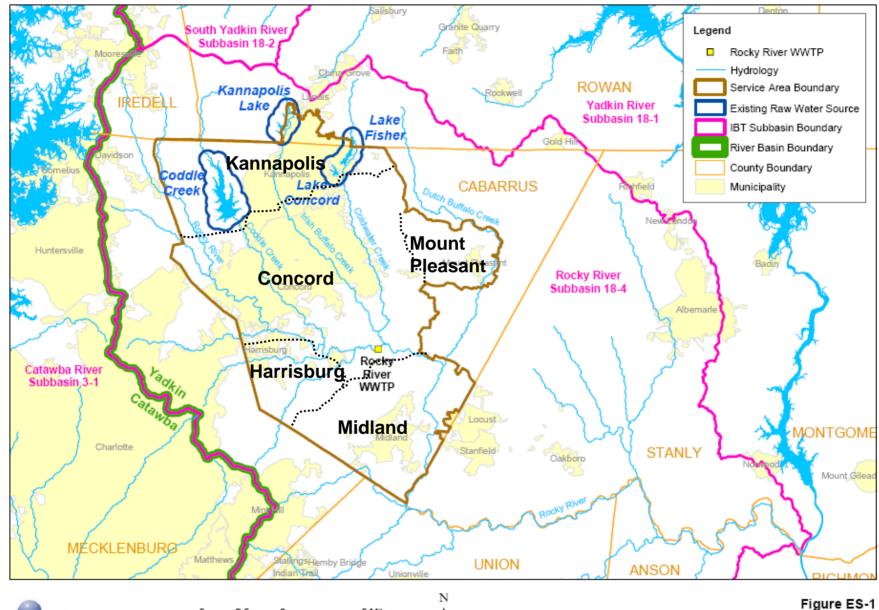
Request

- 10 MGD max day IBT from Yadkin
- Balance to come from Catawba
 - –26 MGD max day if the IBT from Yadkin is granted
 - Otherwise, 36 MGD from Catawba

Recommended Decision presented to EMC for action in January

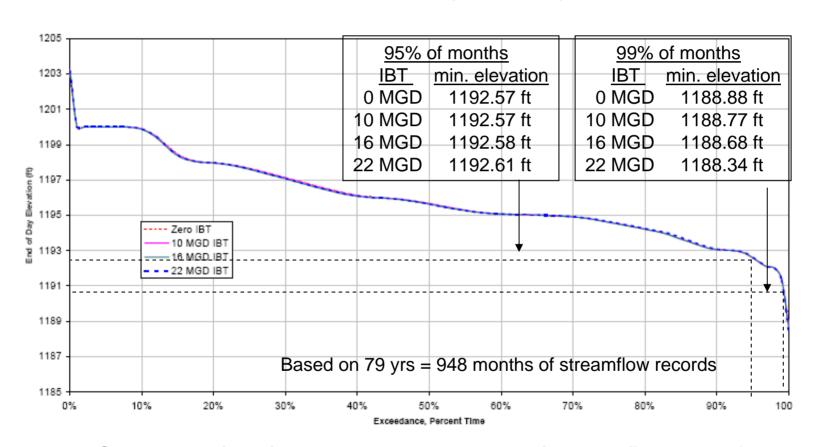
- Grant 10 MGD (max day) from Catawba via Charlotte-Mecklenburg Utilities
- Grant 10 MGD (max day) from Yadkin
- Subject to several conditions
 - Conservation policies in Catawba apply to Kannapolis-Concord
 - Changing needs in Catawba Basin
 - built in review after 20 years;
 - Capacity Use Act supercedes IBT certificate


Factors Leading to Recommendation: Calculation of Shortfall


- Rejected argument based on 80 percent rule which put need at 53 MGD instead of the 42.5
- average daily need adjusted to
 42.5 MGD 31 MGD = 11.5 MGD
- Maximum day demand = 11.5 x 1.6 = 18.4
 MGD

Factors Leading to Recommendation: Relative Impacts on Donor Basins

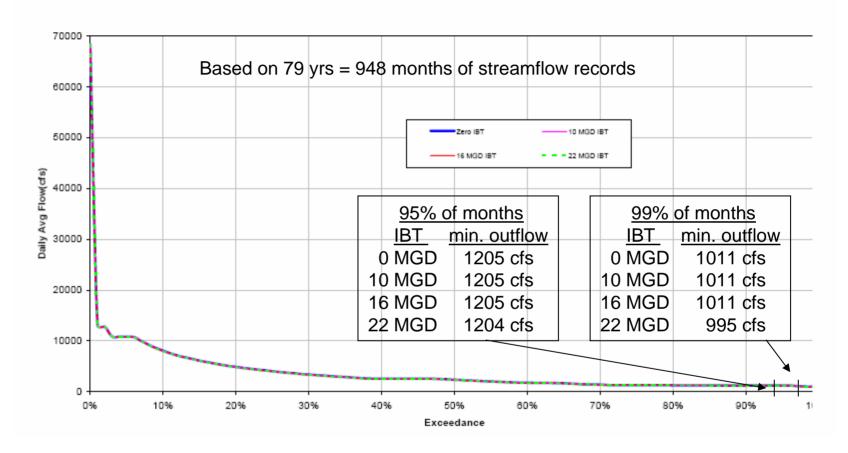
- Transfers in excess of 10 MGD begin to have impacts on Catawba (even they are not major)
- Water availability in Yadkin at High Rock approximately twice that in Catawba at Mt. Island
- Future needs (30-years hence) in all three basins are uncertain


IBT Receiving Basin Service Area and Existing Raw Water Sources Concord/Kannapolis IBT RFEIS

IMPACT ON CATAWBA BASIN

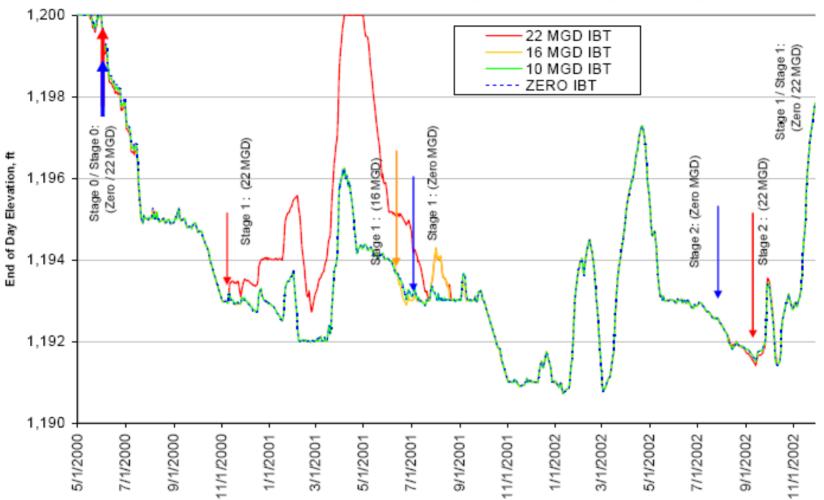
- IBT Scenarios
 (1) Zero (2) 10 MGD (3) 16 MGD (4) 22 MGD
- Summary of performance for 79 years of streamflow records with projected needs in Catawba Basin
- Worst case in record 2000-2002
- Simplified check on credibility of model

FIGURE ES-4 Lake James Elevation Duration Curve Concord/Kannapolis IBT RFEIS

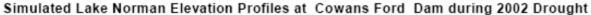

Exceedance Curve of Lake James Elevations for all Elevations Between Jan 1,1929 and Dec 31, 2003

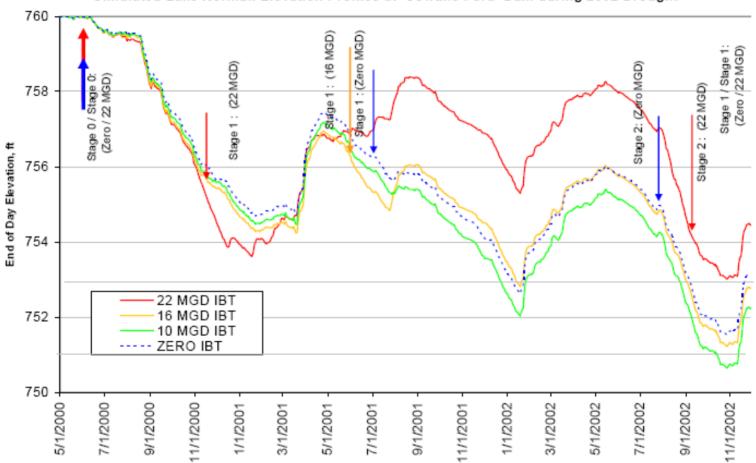
Summary of performance over 79 years of streamflow records

FIGURE ES-5 Lake Wylie Outflow Duration Curves Concord/Kannapolis IBT RFEIS


Exceedance Curve of Wylie Outflows for all Outflows Between Jan 1,1929 and Dec 31, 2003

Summary of performance over 79 years of streamflow records: Outflows from Lake Norman


FIGURE ES-6 Lake James Elevation during 2001-02 Drought Concord/Kannapolis IBT RFEIS


Simulated Lake James Elevation Profiles at Bridgewater Dam during 2002 Drought

Performance under Worst. Drought of Record: Lake James Reservoir Levels

FIGURE ES-7 Lake Norman Elevation during 2001-02 Drought Concord/Kannapolis IBT RFEIS

Performance under Worst Drought of Record: Lake Norman Reservoir Levels

Simple Check – Upper Bounds on Changes in Elevation

6-months of IBT Change in elevation Volume withdrawn 1) Volume withdrawn = IBT Rate x 183 days 2) Apportion volume to six lakes in proportion to their

3) Calculate change in elevation = volume withdrawn/surface area

storage levels at 75 and 90 percent full.

Results

TABLE 2-14
Simple Analysis based on Stage-Storage Curves and Assumption of No Inflow Concord/Kannapolis IBT RFEIS

	Reduction in Reservoir Elevations (inches) for Transfers of 10, 16, and 22 mgd					
	10 mgd		16 mgd nitial Storage Condition		22 mgd	
	90%	75%	90%	75%	90%	75%
Reservoir	storage	storage	storage	storage	storage	storage
James	2.1	2.3	2.1	3.7	4.5	5.0
Rhodhiss	1.1	1.2	1.1	1.9	2.4	2.6
Hickory	1.4	1.6	1.4	2.5	3.0	3.5
Lookout Shoals	1.3	1.3	1.3	2.1	2.8	2.9
Norman	1.4	1.7	1.4	2.6	3.1	3.6
Mountain Island	0.9	1.0	0.9	1.6	2.1	2.3

IMPACT ON YADKIN BASIN: Summary of Performance over 75 Years of Streamflow Records

FIGURE ES-8 High Rock Lake Level Duration Curves - Maximum Daily Demands Concord/Kannapolis IBT RFEIS

High Rock Reservoir

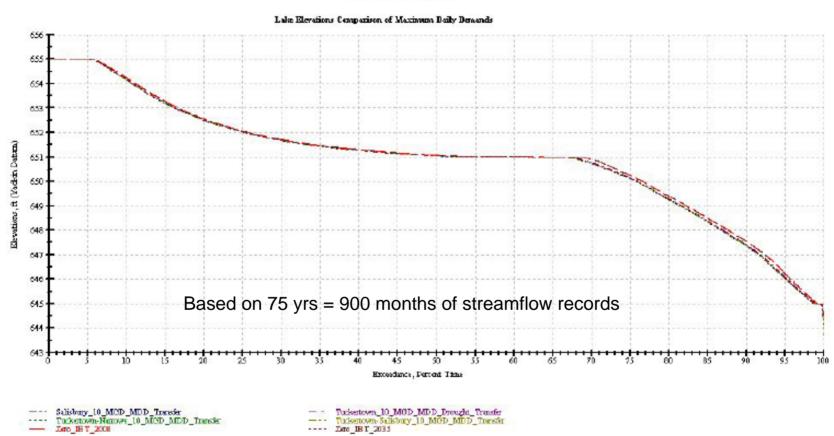
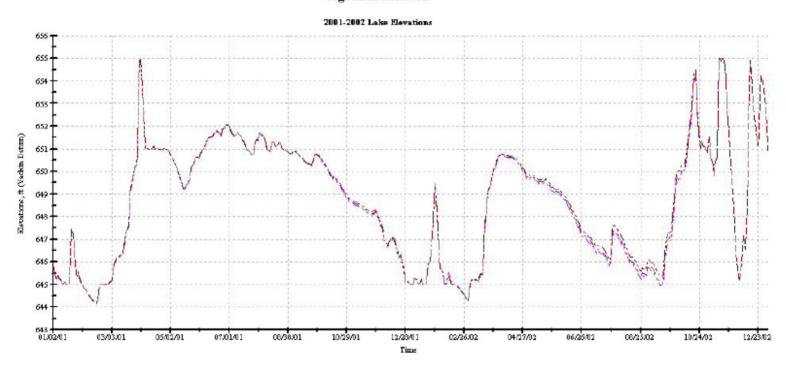



FIGURE ES-10 High Rock Reservoir 2001-2002 Drought Lake Levels Concord/Kannapolis IBT RFEIS

High Rock Reservoir

⁻⁻⁻⁻ Tudostozen_10_MGD_Constant_Drought_Transf
---- Zero_IBT_2031_Drought

- - Tuckertown_10_MGD_MDD_Drought_Transfer

Simple Check – Upper Bounds on Changes in Elevation

Storage,	Drawdown in inches resulting			
% of Available	<u>from 18</u> High	3 days of 10 MGE	<u>IBT</u>	
<u>Capacity</u>	Rock	<u>Narrows</u>	<u>Tillery</u>	
100%	2.7	3.6	1.6	
75%	3.3	3.9	1.7	
50%	4.4	4.4	1.9	

Comparative Analysis

Drainage Areas and Average Flow

Location	Drainage Area	Average Flow
Catawba River at Mt. Island	1,856 sq. mi.	1,495 MGD
Yadkin River at High Rock	3,940 sq. mi.	3,208 MGD

Average June-November Flows, cfs						
Percentile (75 yrs)	Mt. Island	High Rock				
Lowest	358	642				
5% of years	461	875				
10% of years	539	1087				
25% of years	702	1468				
50% of years	987	2135				

Items for Discussion on IBT Statute and Process

- Weights on donor versus receiving basins
- Time limits on certificates 20-30 years
- Seasonal limits on transfers take water during high flow months and put in offstream storage
- Two-stage public involvement
 - Notice of receipt of petition
 - Hearing on recommended decision