

Summary

- Spills are major problem in the Catawba basin but my focus will be on coal ash
- Catastrophic failures such as Dan River and Kingston are inevitable if ash is left in unlined pits beside waterways
- Significant long-term risk from ongoing discharges and leakage
- Existing law is inadequate
- Major health & economic impacts of ignoring the problem

Background

Recent events highlight one aspect of the issue

Avoid contact with water and sediment from the stream, and not to eat any fish or shellfish from that section of the Dan.

- N.C. Department of Health and Human Services

"In all honesty, the numbers we're seeing are of concern for the long-term health of that river and all of the species that rely on it."

- Jamie Kritzer, NCDENR

"The Dan River does not have a clean bill of health. ... The bottom line remains that we are concerned for the long-term health of the Dan River. We will continue to test the water in the river as we assess the spill's impact and determine the most appropriate ways to clean up the river. We are in this for the long haul."

- Tom Reeder, NCDENR

"We need to make sure this never happens again in North Carolina."

- Governor McCrory, February 6, 2014

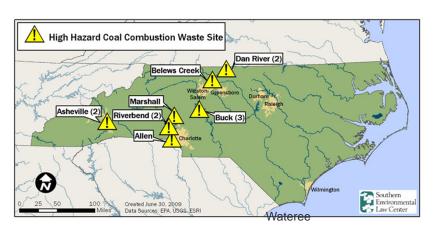
"Just letting them [ash ponds] sit there is not the answer to the problem."

- Sen. Tom Apodaca, R-Henderson

"You have our complete, 100 percent commitment to do it right. We are accountable and we will make it right."

- Paul Newton, President, Duke Energy Utility Operations

As of February 9, Duke said it has no timetable for removing the waste from its leaky unlined ponds.


- "We will rely on science to close ash basins in a way that protects groundwater long-term and is prudent for customers and plant neighbors."
- "Closing ash basins provides the ultimate resolution to these issues, and site-specific engineering studies to determine the most appropriate closure method for each are well under way."

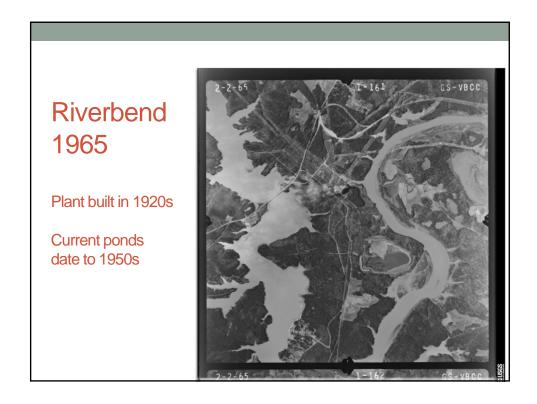
 $\underline{http://www.charlotteobserver.com/2014/02/09/4677837/nc-regulators-shielded-dukes-coal.html\#.Uv5dOPldXRs\#storylink=cpy-coal.html$

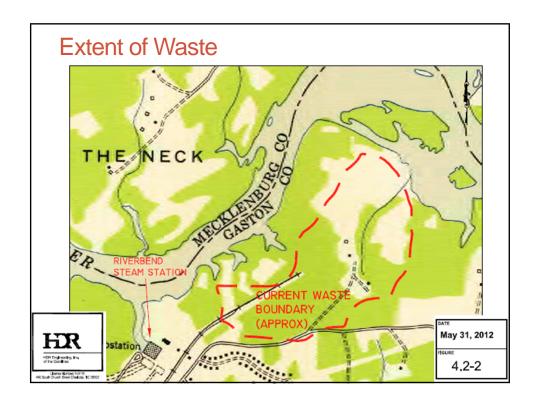
Coal Ash of the Catawba vs. the Dan											
In only 29 miles along the Ca	tawba River: 3 Site	es. 4 ponds. 445 ac	res. 5 billion gallor	is.							
C a t a w b a RIVERKEEPER® ADVOCACY - EDUCATION - PROTECTION											
Facility	Dan River Steam Station	Riverbend Steam Station	Allen Steam Station	Marshall Steam Station							
City/Town	Eden , NC	Mount Holly, NC	Belmont, NC	Terrell, NC							
Waterway On Which Coal Ash Sits	Dan River	Mountain Island Lake (Catawba River)	Lake Wylie (Catawba River)	Lake Norman (Catawba River)							
Closest Drinking Water Intakes	Danville, VA; South Boston, VA	Charlotte-Mecklenburg, NC; Gastonia-Gaston, NC; Mount Holly, NC	Belmont, NC; Rock Hill, SC	Mooresville, NC; Lincoln County, NC; Charlotte-Mecklenburg, NC							
Year Coal Ash Ponds First Constructed	1954	1950	1965	1963							
New Coal Ash Being Generated?	No	No	Yes	1to							
Total Acreage of Coal Ash Ponds	3.6	/1	+ 62 acres (inactive)								
Total Volume (gallons) of Coal Ash Ponds	220,305,348	,	(active; inactive unknown)	2,243,487,000							
Crest Height of Coal Ash Ponds (feet)		80	75								
Coal Ash Ponds Unlined?	To-	Vac	Vac	169							
On 2010 List of EPA High Hazard Impoundments? (44 Sites)	Yes	Yes	Yes	Yes							
Has Site Had a Reported Failure?	Yes (February 2014)	No	Yes (January 1983)	No							
Impounding Dike(s) Constructed on Foundation of Ash?	Yes	Yes	Yes	No							
Groundwater Contamination Reported by Duke's Wells?	Yes	Yes	Yes	Yes							
Illegal Discharges of Seepage?	Yes	Yes	Yes	Unknown							
Cited for Maintenance Problems in Engineering Reports? (e.g., sloughing, vegetation and roots, animal burrows)	Yes	Yes	Yes	Yes							
Coal Ash Ponds Permitted for Dumping Waste Chemicals?	Yes	Yes	Yes	Yes							
Table compiled from engineering reports and information requests received by the EPA. f	rom Duke Energy. For more informat	tion, visit www.Catawba Riverkeeper	org and find us on Facebook.								

Coal Ash Waste

- EPA Identified 45 coal ash ponds as High Hazard Potential
 - 7 are in North Carolina
 - 4 of these 45 are along the Catawba River
 - Additional inactive waste ponds on the Catawba

Lake Norman (Marshall)


Riverbend


- Mount Holly, NC
- Plant built in 1920s; waste pond at current location in 1950
- Two UNLINED ponds cover 71 acres
- Crest is 80 feet above surface of Mountain Island Lake
 - ${\scriptstyle \bullet}$ Lake is also a drinking water reservoir for 860,000 people in

Charlotte-Mecklenburg, Gastonia, Mount Holly, Matthews, Mint Hill and other municipalities

- Power generation ceased as of April 1, 2013
 - Ponds remain active

Regulation

- NPDES (National Pollution Discharge Elimination System)
 - Clean Water Act (1972)
 - · Targeted contaminants and testing frequency vary site-to-site
 - As infrequent as quarterly
 - · Many metals not tested

· Coal ash not regulated as waste

- Household trash is more regulated under Subtitle D (Non-hazardous solid wastes)
- Some repurposing allowed
 - · Drywall, concrete
 - · Inadequate demand
- EPA Maximum Contaminant Levels
 - · Legally enforceable drinking water standards for public systems

Coal Ash

Coal ash and leachate from coal ash contains toxic metals and other hazardous substances.

- Duke likes to point out that the metals and other toxic elements in coal as are naturally occurring, which is true,
- But burning coal increases the concentration of these elements in the ash.

What else goes into ash ponds?

- It is not just ash. Virtually all wastes are permitted to go into the coal ash ponds. Even the current permit allows wastes such as boiler wash down, other boiler cleaning wastes, biocides, metal cleaning wastes, laboratory wastes, vehicle wash water, coal pile runoff, sump discharges and domestic waste to be dumped untreated into the ash ponds.
- The wastes are diluted, but not really treated.

Five Types of Discharges from the Ash Ponds

1. Direct permitted discharge of water from ash

Permitted Discharges

- Duke states that it is in compliance with its permit, but
- The permit contains **no limits for** the contaminants of most concern: **arsenic, selenium and mercury.**
- Thus, to say that the permitted discharge point is in compliance, says very little.

EFFLUENT CHARACTERISTICS	LI	MITS	MONITORING REQUIREMENTS					
	Monthly Average	Daily Maximum	Measurement Frequency	Sample Type	Sample Location			
Flow			Weekly	Pump logs or estimate	Influent or Effluent			
Total Suspended Solids ¹	23.0 mg/L	75.0 mg/L	Monthly	Grab	Effluent			
Oil and Grease	11.0 mg/L	15.0 mg/L	Annually	Grab	Effluent			
Total Copper ²	1.0 mg/L	1.0 mg/L	Quarterly	Grab	Effluent			
Total Iron ²	1.0 mg/L	1.0 mg/L	Quarterly	Grab	Effluent			
Total Arsenic ²			Quarterly	Grab	Effluent			
Total Selenium ²			Quarterly	Grab	Effluent			
Total Mercury			Quarterly	Grab	Effluent			
Total Phosphorus			Semi-annually	Grab	Effluent			
Total Nitrogen (NO ₂ + NO ₃ + TKN)			Semi-annually	Grab	Effluent			
pH ³			Monthly	Grab	Effluent			
Chronic Toxicity ⁴			Quarterly	Grab	Effluent			

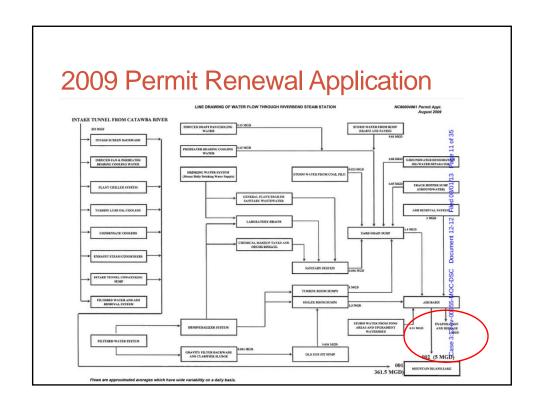
STATE OF NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES DIVISION OF WATER QUALITY

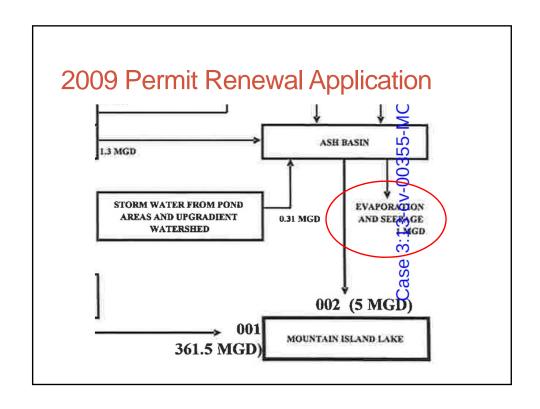
PERMIT

TO DISCHARGE WASTEWATER UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

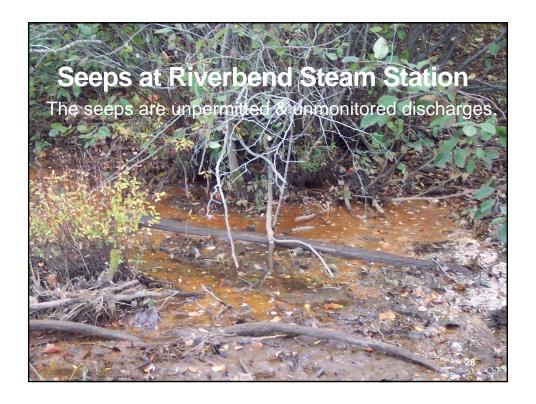
A.(16.) ASH POND CLOSURE

The facility shall prepare an Ash Pond Closure Plan in anticipation of the facility closure. This P submitted to the Division one year prior to the closure of the facility.

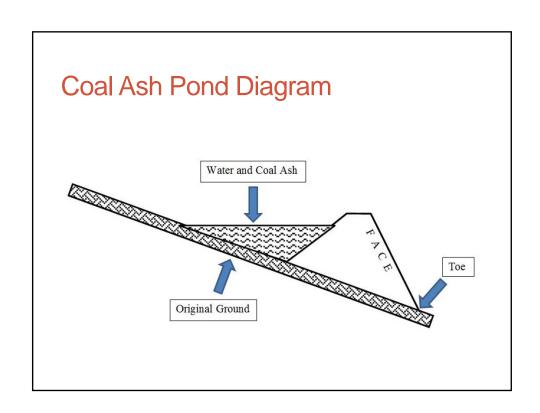

- Facility formally closed April 1, 2013
- Duke plans to study closure options in 2014
- No certain date on when Duke will propose a cleanup option

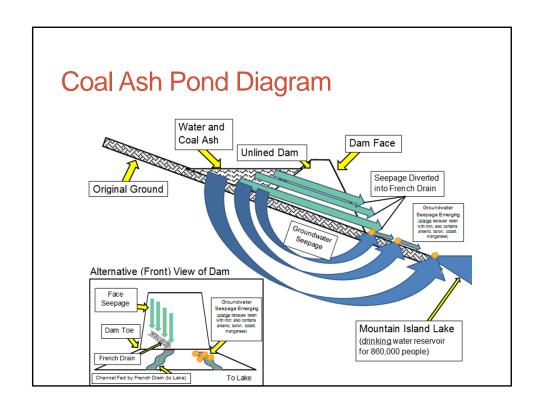

Five Types of Discharges from the Ash Ponds

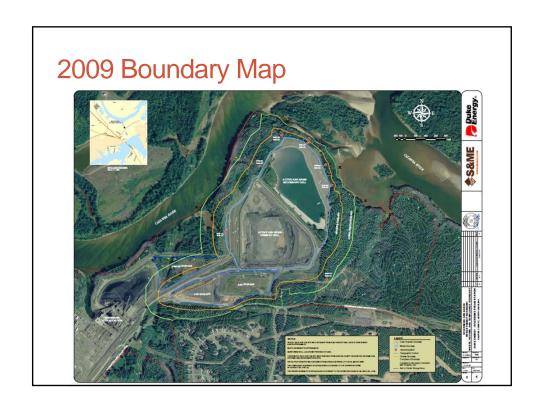
- 1. Direct permitted discharge of water from ash ponds.
- 2. Unpermitted, illegal seepages of ash waste through and under the earthen dams.

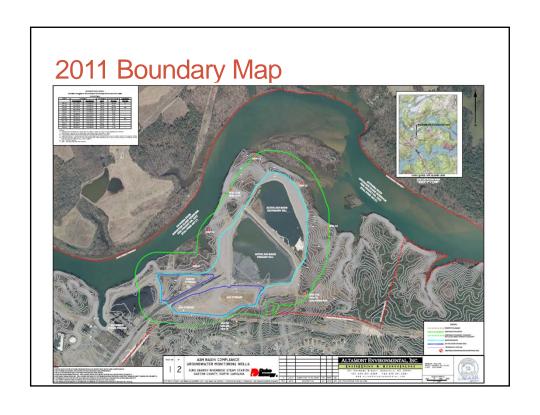


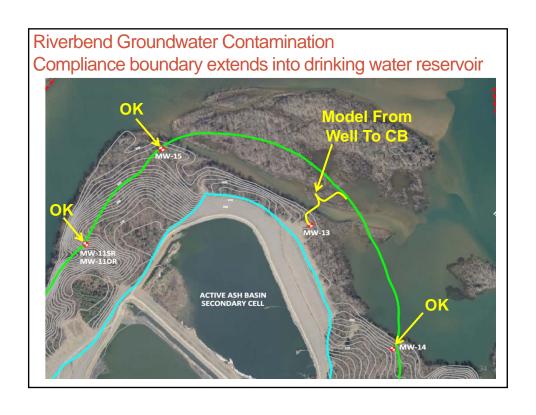
Mountain Island Lake Outfall Seeps


These seeps have developed (or at least significantly intensified) since December. Each seep discharge is at least equivalent to a typical drinking water fountain.

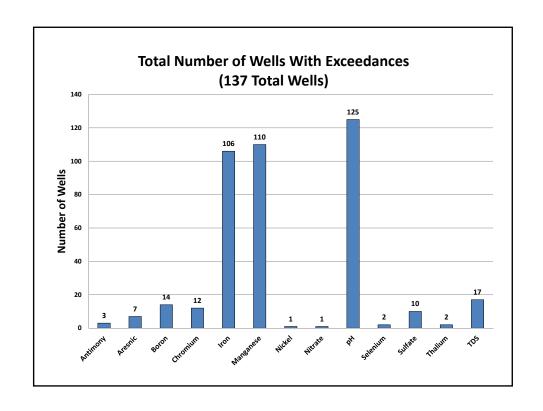


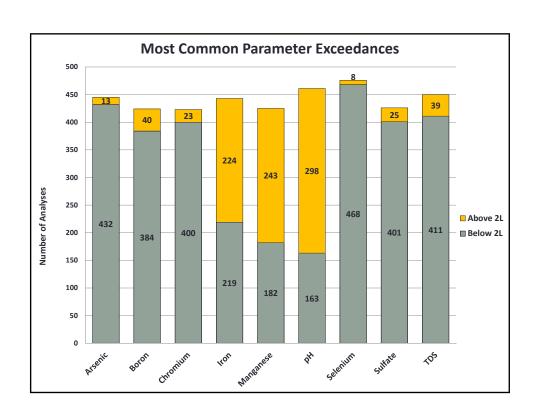

Five Types of Discharges from the Ash Ponds


- 1. Direct permitted discharge of water from ash ponds.
- 2. Seepages of ash waste through and under the earthen dams, which are unpermitted.
- 3. Leakage of contaminants from the unlined ponds into the groundwater.



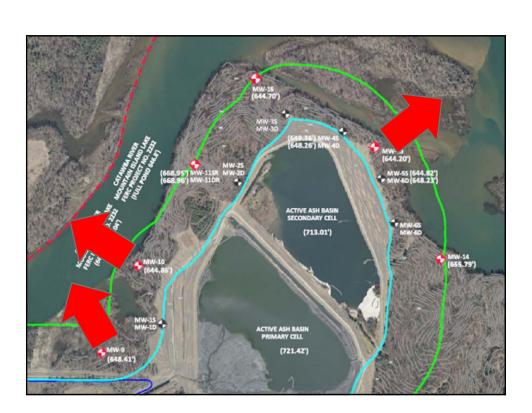
Duke Supplemental Groundwater Monitoring Report (6/21/13) The report containing the predictive modeling is found in Appendix A. The results of the


The report containing the predictive modeling is found in Appendix A. The results of the predictive groundwater modeling are summarized below:


MW-9 – The model-predicted iron concentration at the compliance boundary for the February, June, and October 2012 sampling events was greater than the 2L Standard. The model-predicted manganese concentration at the compliance boundary for the February 2012 sampling event was greater than the 2L Standard.

MW-10 – The model-predicted iron and manganese concentrations at the compliance boundary for the February 2012 sampling event were greater than the 2L Standard. The model-predicted manganese concentration at the compliance boundary for the October 2012 sampling event was greater than the 2L Standard.

MW-13 – The model-predicted iron and manganese concentrations at the compliance boundary for the February, June, and October 2012 sampling events were greater than the 2L Standard.


GW Stand	lard (eff. 1/1/2	010)		6.5-8.5	300	50	GW Stane	lard (eff. 1/1/2	2010)		6.5-8.5	300	50
Units				SU	ug/l	ug/l	Units				SU	ug/l	ug/l
Note: NA	'Not Analyzed' &	& NS "Not Sampled"		pH (field)	Iron	Manganese		'Not Analyzed'	& NS "Not Sampled"		pH (field)	Iron	Manganese
Units				SU	ug/l	ug/l		Tion / many 200	I THO THOT COMPICE		SU		
Facility N	ame: Riverben	d Steam Station (NO	0004961)				Units	L		L	30	ug/l	ug/l
		iance Boundary (ft)					Facility N		d Steam Station (NO				
	Inside Boundary - Annual Modeling	_	Sample						liance Boundary (ft)	ļ			
Well	e a	At Boundary	Collection					- w		Sample			
Name	9 6	Ĕ	Date				Well	e ji	ar _Z	Collection			
,,,,,,,	a e	Bo	(Month-Year)					5 8	Ē				
l	l sig	¥	(Worth-rear)				Name	Inside Boundary - Annual Modeling	At Boundary	Date			
MW-7SR	= 4	~75	Dec 2010		125	050		de n	£	(Month-Year)			
MW-7SR		-75	Feb 2011	5.5 5.3	790	256 413		S L	•				
MW-7SR			Jun 2011	5.3	495	304						-	
MW-7SR			Oct 2011	5.4	532	167	MW-11SF		X	Dec 2010	NS	NS	NS
MW-7SR			Feb 2012	5.1	285	113	MW-11SF	-	^	Feb 2011	6.1	486	384
MW-7SR			Jun 2012	5.2	520	122	MW-11SF			Jun 2011	5.8	138.00	59.00
MW-7SR			Oct 2012	5.2	221	67	MW-11SF	-		Oct 2011	5.6	87	30
MW-7D		~75	Dec 2010	5.8	< 10	< 5	MW-11SF	-		Feb 2012	5.7	63	24
MW-7D		-75	Feb 2011	5.6	< 10	< 5	MW-11SF	-		Jun 2012	5.7	39	17
MW-7D			Jun 2011	5.8	< 10	< 5	MW-11SF	-		Oct 2012	5.8	30	16
MW-7D			Oct 2011	5.8	< 10	< 5	WIVE-LIGH			OCI 2012	5.0	30	10
MW-7D			Feb 2012	5.6	< 10	< 5	MW-11DF		X	Dec 2010	NS	NS	NS
MW-7D			Jun 2012	5.7	< 10	< 5	MW-11DF	-	^	Feb 2011	5.8	21	168
MW-7D			Oct 2012	5.7	< 10	< 5	MW-11DF			Jun 2011	5.6	13.00	103.00
MW-8S		~30	Dec 2010	5.3	53	123	MW-11DF			Oct 2011	5.6	< 10	87
MW-8S		~30	Feb 2011	5.2	41	135	MW-11DF			Feb 2012	5.7	11	101
MW-8S			Jun 2011	4.9	73	144	MW-11DF	_		Jun 2012	5.7	< 10	92
MW-8S			Oct 2011	5.2	16	135	MW-11DF	_		Oct 2012	5.8	< 10	87
MW-8S			Feb 2012	5.1	58	133	WIVETIDE			OCI ZUIZ	5.0	V 10	01
MW-8S			Jun 2012	5.1	24	126	MW-14		~20	Dec 2010	6.9	554	270
MW-8S			Oct 2012	5	19	104	MW-14		20	Feb 2011	7.0	378	55
MW-8I	-	~30	Dec 2010	6.8	787	538	MW-14	_		Jun 2011	6.8	175	43
MW-8I		50	Feb 2011	6.4	643	290	MW-14			Oct 2011	6.8	58	193
MW-8I			Jun 2011	6.3	812	43	MW-14			Feb 2012	6.8	935	353
MW-8I			Oct 2011	6.4	942	52	MW-14			Jun 2012	6.7	206	503
MW-81			Feb 2012	6.4	976	32	MW-14			Oct 2012	6.7	98	20
MW-8I			Jun 2012	6.4	853	39	IMIAA-14			OCI 2012	0.7	30	20
MW-8I			Oct 2012	6.1	618	23	MW-15		~20	Dec 2010	NC	NC	NC
MW-8D		~30	Dec 2010	7.1	2640	743	MW-15		20	Feb 2011	5.3	227	55
MW-8D	1	50	Feb 2011	6.8	1330	671	MW-15			Jun 2011	5.2	274	64
MW-8D	i		Jun 2011	7.0	777	622	MW-15						
MW-8D			Oct 2011	6.8	954	535				Oct 2011	5.2	198	81
MW-8D			Feb 2012	6.8	1480	452	MW-15			Feb 2012	5.2	399	86
MW-8D			Jun 2012	6.8	1320	174	MW-15			Jun 2012	5.1 5.2	45	52
MW-8D			Oct 2012	6.5	2050	82	MW-15		<u> </u>	Oct 2012	5.2	55	46

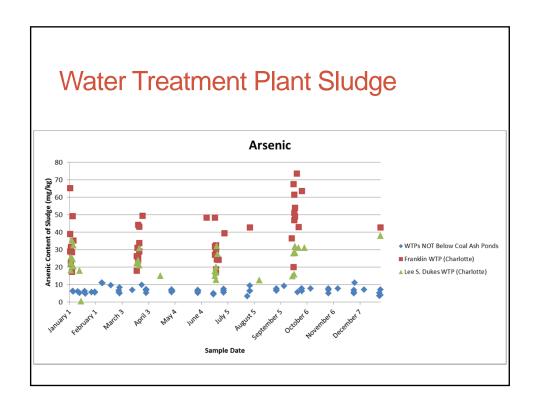
Five Types of Discharges from the Ash Ponds

- 1. Direct permitted discharge of water from ash ponds.
- 2. Seepages of ash waste through and under the earthen dams, which are unpermitted.
- 3. Leakage of contaminants from the unlined ponds into the groundwater.
- Migration of contaminated groundwater into the river.

Surface Water

- Lake/River
 - "Dilution is the solution to pollution"
 - Arsenic: EPA MCL of 10 ppb
- Charlotte-Mecklenburg Storm Water Services testing
 - Multiple exceedences, especially around summer and dry periods
 - 1.8 to 3.6 times MCL in reservoir cove near primary outfall
- Catawba Riverkeeper Foundation
 - Char-Meck Drinking Water Intake (DWI)
 - Outfall
 - Consistent with data Duke reports to EPA, DENR

Mtn. Island Lake Ambient Water


Periodic exceedances of water standards, including Arsenic (EPA Max Contaminant Level for Arsenic is 10 ug/l).

Don't know if PCB problems in fish related to power plants.

A	В	С	D	E	F	G	H	1	J	K	L	
Sampno	Coldate	Site	Analyte	Qualifier	Result	Aunit	MDL	RecordID	TransfDate	SQL_ID	QCDate	
AD37689	1/13/2010	RB1	Arsenic	<	5	ug/L	5	256111	1/26/2010	719804	1/21/2010	Riv
AD43552	3/9/2010	RB1	Arsenic	<	5	ug/L	5.0	258515	3/30/2010	728033	3/29/2010	Riv
AD49964	5/6/2010	RB1	Arsenic		23	ug/L	5.0	260558	6/2/2010	734571	5/11/2010	Riv
AD51927	5/21/2010	RB1	Arsenic		6.4	ug/L	5.0	261324	6/2/2010	733874	6/1/2010	Riv
AD56864	7/7/2010	RB1	Arsenic		8.6	ug/L	5.0	262433	7/21/2010	741449	7/20/2010	Riv
AD63735	9/7/2010	RB1	Arsenic		5.5	ug/L	5.0	265513	9/22/2010	750880	9/21/2010	Riv
AD67093	10/5/2010	RB1	Arsenic		16	ug/L	5.0	266396	10/15/2010	754866	10/14/2010	Ri
AD71186	11/11/2010	RB1	Arsenic	<	5	ug/L	5.0	269239	12/1/2010	760338	11/19/2010	Ri
AD77643	1/19/2011	RB1	Arsenic	<	5	ug/L	5.0	282548	2/24/2011	822656	1/26/2011	Riv
AD82967	3/8/2011	RB1	Arsenic		18	ug/L	5.0	285471	3/24/2011	828175	3/21/2011	Ri
AD89120	5/9/2011	RB1	Arsenic	<	5	ug/L	5.0	288386	5/25/2011	836243	5/20/2011	Ri
AD92138	6/8/2011	RB1	Arsenic		22	ug/L	5.0	289206	6/21/2011	840446	6/20/2011	Riv
AD96092	7/18/2011	RB1	Arsenic	<	5	ug/L	5.0	292690	8/5/2011	848036	7/21/2011	Riv
AD99448	8/16/2011	RB1	Arsenic	<	5	ug/L	5.0	293543	9/1/2011	850498	8/23/2011	Riv
AE02244	9/12/2011	RB1	Arsenic	<	5	ug/L	5.0	294807	10/1/2011	853694	9/16/2011	Riv
AE08198	11/8/2011	RB1	Arsenic	<	5	ug/L	5.0	296739	11/23/2011	862996	11/15/2011	Riv
AE15033	1/17/2012	RB1	Arsenic	<	5	ug/L	5.0	299662	1/24/2012	871021	1/23/2012	Riv
AE20601	3/8/2012	RB1	Arsenic	<	5	ug/L	5.0	301849	3/21/2012	878036	3/20/2012	Riv
AE26430	5/7/2012	RB1	Arsenic		35	ug/L	5.0	304974	6/8/2012	889439	5/21/2012	Ri
AE30438	6/13/2012	RB1	Arsenic	<	5	ug/L	5.0	305738	7/3/2012	893688	6/22/2012	Ri
							Y					

Where do contaminants go?

- Do not simply pass through or flush out with surface water
- Transition from dissolved to particulate phase
 - Settle out on bottom of lake/river
- Contaminants ~10,000x concentrated on particle surfaces
- Contaminants ~25x concentrated in pore water
 - Pore water is the water content of sediment
- Can be re-released into water column
- Groundwater contamination

Five Types of Discharges from the Ash Ponds

- 1. Direct permitted discharge of water from ash ponds.
- 2. Seepages of ash waste through and under the earthen dams, which are unpermitted.
- Leakage of contaminants from the unlined ponds into the groundwater.
- 4. Migration of contaminated groundwater into the river.
- Potential for catastrophic release

2009 Lockheed-Martin Report

3.4 Foundation Conditions

Documents reviewed by CHA indicate that the Original Primary Dike was not constructed on wet ash, slag or other unsuitable materials. The raised portion of this dike redacted) was partially construction (upstream side) on sluiced ash. The Secondary Dike does not appear to have been constructed on wet ash, slag or other unsuitable materials. The Intermediate Dike was constructed on sluiced ash.

CHA was not provided with documentation of foundation preparation for the Primary, Secondary or Intermediate Dikes.

Final Report Assessment of Dam Safety of Coal Combustion Surface Impoundments Duke Energy Riverbend Steam Station Mount Holly, North Carolina

4.10 Hazard Assessment

2009 Lockheed-Martin Report

We recommend that a breach analysis be performed for the Primary and Secondary Ash Ponds to determine whether development downstream would suggest a high hazard classification is warranted for the impoundments.

4.11 Stability Analyses

The CHA recreated cross sections outlined in Section 3.3.2 indicate that the factors of safety for the loading conditions calculated are above the minimum required factors of safety as discussed in Section 3.3. CHA recommends that soil properties, including shear strength under current conditions, be confirmed for the primary dike. We also recommend that a rapid drawdown analysis be performed for the dike once the soil properties are confirmed.

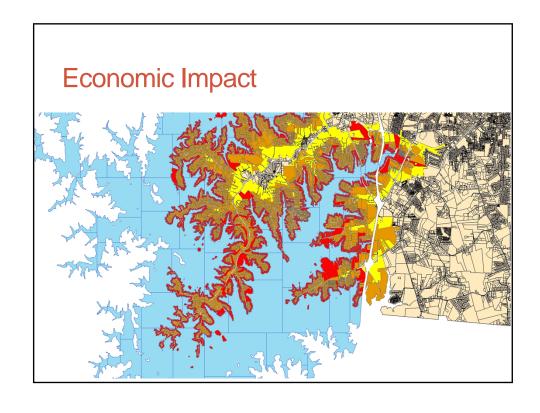
CHA was not provided with stability analyses for the secondary dike. We recommend Duke Energy perform stability analyses for this embankment including steady state, flood surcharge, rapid drawdown, and seismic loading conditions. CHA performed preliminary analyses for each of these loading conditions, except for the rapid drawdown condition, using similar parameters as used by Duke Energy for the primary dike. These preliminary analyses indicate that the factors of safety are at or slightly the minimum required factors of safety as discussed in Section 3.3. However, the soil properties need to be confirmed.

Stability analyses should also be performed for the intermediate dike.

Final Panor

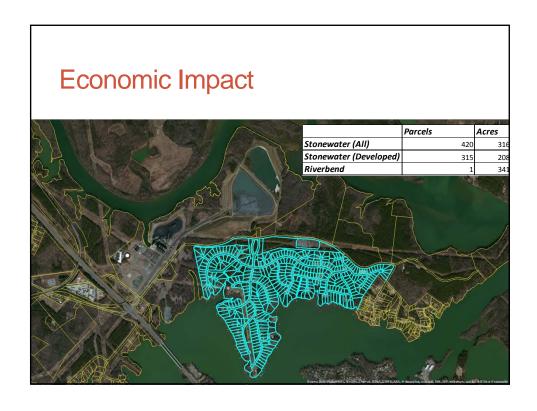
What happens if an active or inactive ash pond fails?

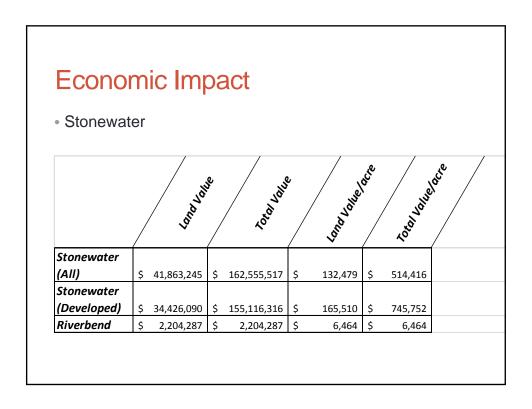
Home surrounded by toxic coal ash sludge after the Tennessee Valley Authority coal ash spill (Kingston, TN).


2008 TVA Spill

- ~\$2 billion clean-up cost
 - TVA ruled liable
 - · Lawsuits still in courts
- Small, rural area
 - Similar spill in urban area would have greater impact

Economic Impact


Lake Norman


County	Total Tax		#Parcels	#Acre	es	Tax%	Parcel%	Acre%	
Lincoln	\$	7,972,486,743.00	50952		181330.8				
Lincoln_LF	\$	1,228,112,432.00	2197		2207.5	15.40%	4.31%	1.22%	
Lincoln25	\$	1,867,599,366.00	5048		5053.1	23.43%	9.91%	2.79%	
Lincoln5	\$	2,050,015,300.00	6039		6175.7	25.71%	11.85%	3.41%	
Iredell	\$	17,861,850,813.00	92900		365402.4				
Iredell_LF	\$	3,529,784,920.00	6237		11051.1	19.76%	6.71%	3.02%	
Iredell25	\$	5,942,207,368.00	14363		20845.4	33.27%	15.46%	5.70%	
Iredell5	\$	6,716,155,411.00	17197		25416.4	37.60%	18.51%	6.96%	
Catawba	\$	14,787,731,500.00	86678		251931.74				
Catawba_LF	n/a		n/a	n/a		n/a	n/a	n/a	
Catawba25	n/a		n/a	n/a		n/a	n/a	n/a	
Catawba5	n/a		n/a	n/a		n/a	n/a	n/a	
Mecklenburg	\$	315,150,949,732.00	377583		626407.9				
Mecklenburg	\$	2,718,219,600.00	3628		2933.7	0.86%	0.96%	0.47%	
Mecklenburg	\$	7,803,072,290.00	7353		6457.1	2.48%	1.95%	1.03%	
Mecklenburg	\$	10,371,555,098.00	9057		10860.3	3.29%	2.40%	1.73%	

Economic Impact

Gaston County (MIL and Lake Wylie)

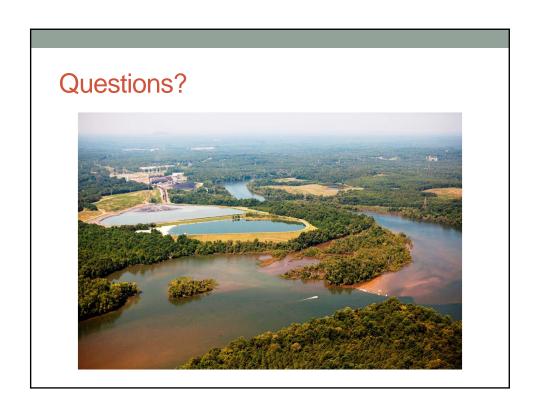
County	Total Tax		#Parcels	#Acres	Tax%	Parcel%	Acre%
Gaston	\$	13,140,911,837	102,406	214,293			
MIL LF	\$	86,246,593	208	2,135	0.66%	0.20%	1.00%
MIL 0.25	\$	237,469,286	677	2,943	1.81%	0.66%	1.37%
MIL 0.5	\$	259,853,427	811	4,924	1.98%	0.79%	2.30%
LW LF	\$	386,480,280	955	6,113	2.94%	0.93%	2.85%
LW 0.25	\$	809,886,014	3,327	10,424	6.16%	3.25%	4.86%
LW 0.5	\$	1.191.591.065	5.830	13.692	9.07%	5.69%	6.39%

Removing Ash Ponds is Feasible

 Wateree River (Wateree Station)

SCE&G Settlement

- SCE&G powerplant on Wateree River (Eastover, SC)
- Groundwater contamination (arsenic)
- CRF filed suit May 2012
- Settled August 2012, agreeing to:
 - Completely remove ash in unlined ponds and move away from river
 - Switch to dry ash handling with lined basins


What Needs to Be Done

- Clean up site
 - 'Leave it as you found it'
 - Place material in lined landfill
 - SCE&G and SCANA precedent
- Why?
 - Groundwater contamination
 - Seeps
 - Potential for failure
 - Water supply threat
 - Economic impact
 - Maximum contamination will peak decades from now
 - 'Other' chemicals

Legislative Issues

- Legislature should set deadlines for removal of ash from unlined facilities beside rivers, streams and drinking water reservoirs - including closed facilities.
 - Capping unlined waste pits should be banned
 - · Wastes should be put in lined landfills away from water
- DENR needs adequate funding
- Laws need to be enforced, not selectively enforced

