Life Cycle Cost Analysis for Pavements: An Overview

Making the world's best pavements even better!

March 28, 2012

Jerry Reece, Executive Director
North Carolina Concrete Pavement Assn
An affiliate of the ACPA
Greensboro, NC

Learning Objectives

- What is a LCCA?
- Why use the LCCA approach?
- Who is using LCCA?
- What is Federal policy?
- Overview of 5-step LCCA process
- Important factors and considerations
- NC's use of LCCA

Background

 When evaluating competing project designs, engineers are often confronted with the option of using alternative materials with wide ranges of design or useful life!

Concrete Overlay

Asphalt Overlay

(Graphic: CP Tech Center)

Background

- because:
- Comparison often complicated because:
 - Lowest initial cost may not be the most effective
 - Must project all costs of competing alternatives
 - Account for future inflation and time-value of money
- Objective: To determine the lowest Long-Term cost of the competing design alternatives

What is LCCA?

 Life-Cycle Cost Analysis is a process for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future costs, such as maintenance, user, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment.

Source: Transportation Equity Act for the 21st Century

ACPA Education & Training

What is LCCA?

 In short, LCCA is the process of determining the ownership cost of any roadway segment over a prescribed number of years.....asphalt or concrete.

Why use the LCCA approach?

- Make better transportation investment decisions
- Assist in determining the lowest cost way to meet the performance objectives of the project.
- Dwindling resources and reduced purchasing power makes the employment of LCCA even more critical.

Why use the LCCA approach?

Reduced purchasing power...

(Source: US BLS)

Who is using LCCA?

- South Carolina DOT SPR 656 Preliminary
 - 33 states and 2 provinces responded...

What is FHWA POLICY?

FHWA does not require the use of LCCA, but recommends it's use as a matter of "GOOD Practice"

Life Cycle Cost Analysis

THE PROCESS *

Making the world's best pavements even better!

The LCCA Process...

- Five steps...
 - 1. Establish design alternatives
 - 2. Determine timing of activities
 - 3. Estimate agency and user costs
 - 4. Compute life-cycle costs
 - 5. Analyze results

LCCA: Five-Step Process

1. Establish design alternatives

- Asphalt versus concrete pavement?
- Requires equal BENEFITS to the user, i.e. same level of service over the analysis period
- DarwinME design methods predict the long term performance of each pavement type

LCCA: Five-Step Process

2. **Determine timing of activities** (real data)

When will the future maintenance and rehabilitation costs be incurred?

(Graphic: FHWA)

ACPA Education & Training

Meking the world's best pavements even better!

MECHANISTIC EMPIRICAL PAVEMENT DESIGN GUIDE (MEPDG)

New design procedure based on advanced models & actual field data collected across the US Adopted by AASHTO in April 2011 as its Official Pavement Design Guide

MEPDG Facts

State-of-the practice design procedure based on advanced models & actual field data collected across the US

- Adopted by AASHTO in 2008 as the Interim Pavement Design Guide
- · New and rehabilitated pavements
- Calibrated with more than 2,400 asphalt and concrete pavement test sections across the U.S. and Canada, ranging in ages up to approximately 37 years

Based on mechanistic-empirical principles that account for site specific:

- Traffic
- Climate
- Materials
- Proposed structure (layer thicknesses and features)

Provides estimates of performance during the analysis period

- Performance predicted for cracking, faulting, IRI, cumulative damage, load transfer, and punchouts (CRCP)
- · Can match rehabilitation activities to performance

MEPDG gives estimates of performance so designer can evaluate different design features

MEPDG Performance Curve

Blue Line - The actual level of distresses predicted (the most likely distress level)

Magenta Line - The level of distresses at the given reliability level (i.e. 90%)

Red Line - <u>Defined Failure Limit</u>. Hitting this distress level does not mean the pavement is no longer functioning.

It is the level defined as to when major rehabilitation is needed (i.e. patching & DG or overlay).

FINAL PAVEMENT PERFORMANCE COMPARISONS

Most agencies do repairs when IRI ~ 120 in/mi (red dotted)

IRI Limit

Asphalt Design (From NCDOT)

9" AC / 8" ABC / Subgrade

Repair required at Year 10 (in line with NCDOT LCCA practices)

Concrete Designs

No structural repair required (in line with NCDOT LCCA practices)

LCCA: Five-Step Process

- 3. Estimate agency costs and user costs
 - Exclude elements that are same for all alternatives
 - Agency costs are easier to establish MUST base on historical data!
 - User costs may include: vehicle, delay and crash costs!

LCCA: Five-Step Process

4. Compute life-cycle costs (Present Worth)

$$\sum_{k=0}^{N} \left(\mathbf{Cost}_{k} \right) \mathbf{x} \left[\frac{1}{(1+\mathbf{d})^{n_{k}}} \right]$$

N = length of analysis period d = discount rate n_k = year of expenditure

Present Worth Factor

LCCA - Present Worth Analysis!

ACPA Education & Training

Making the world's best pavements even better!

LCCA: Five-Step Process

5. Analyze the results

How do agency costs compare?

How do user costs compare?

Can trade-offs be made?

LCCA is a decision support tool

 results of the LCCA are not decisions in and of themselves.

(Federal Register, September 18th, 1996)

Life Cycle Cost Analysis

FACTORS

ACPA Education & Training

Making the world's best pavements even better!

LCCA: Important Factors

- Comparable sections (real data)
- Analysis period
- Time to rehab/maintenance (real data)
- Agency Costs versus User Costs (real data)
- Remaining Service Life Value
- Discount Rate
- Risk and uncertainty safety, material escalation

Five step process...

- 1. Establish design alternatives
- 2. Determine timing of activities
- 3. Estimate agency and user costs
- 4. Compute life-cycle costs
- 5. Analyze results

Resources

- In addition several other sources were extremely helpful, including:
 - Life-Cycle Cost Analysis in Pavement Design, FHWA SA-98-079 (1998)
 - Life-Cycle Cost Analysis Revisited, M. B. Snyder, Ph.D., P.E. (2007)
 - Avoiding the Pitfalls of Life-Cycle Costs Analysis,
 Washington Economic Research Consultants (1987)
 - RealCost 2.2, FHWA (2004)

Historic usage of LCCA in North Carolina

LCCA Usage by NCDOT

 "Life cycle cost analysis is performed when both a flexible and rigid pavement type is considered for a given project."

 Historically, both asphalt and concrete are considered for interstate routes, while asphalt is typically the single choice for non-interstate routes.

NCDOT Roadway Statistics

- NC has nations 2nd largest road system 79,200 miles
- High-Type (heavy duty) roads 21, 348 miles
- High-type Interstate roads 1, 507 miles (7.1%)
- High-Type Non-interstate roads 19,841 miles (92.9%)

Comparative Life Cycle Cost Analysis is generally not performed on non-interstate routes.

How can NC benefit from LCCA usage?

- Construction & maintenance costs become more predictable and programmable for the agency
- The agency is able to take advantage of market conditions that reduce pavement costs
- Pavement comparison induces competition which lowers costs of either roadway type
- Use of new design methods & LCCA procedures, optimizes pavement longevity, decreasing construction zones, lowering user cost and improving safety

Advantages of Concrete Pavements

Longest total life span – some states performing 60-yr analysis periods on high volume roads

Fewer maintenance cycles – 28 -30 yrs after construction

Lowest Life Cycle Cost on medium to heavy-duty roads

Construction pricing has decreased 35-45% in last 5 years

All materials manufactured locally - totally recyclable

Fixed cost of construction – no material indexing

New maintenance techniques make older PCC pavements perform like new – diamond grinding, dowel bar retrofit

Does Life Cycle Work for Maintenance?

ACPA Education & Training

Making the world's best pavements even better!

LCCA Maintenance Options

Asphalt Method

Overlay with Nova chip Asphalt

- Mill and Re-overlay in 8-years
- Mill and Re-overlay in 16-years
- Mill and Re-overlay in 24-years

Concrete Method

- Grind / Reseal Joints- Year 26
- Patch / Grind / Reseal Yr 42

Total expected life with both options is 50+ years

I-26 Asheville, NC

Standing the test of time....

Standing the test of time......

Hwy 32 – Chowan Co 80-years old

What effect does Life Cycle Cost Analysis & Competition have on bid pricing?

\$\$\$

The Missouri and Louisiana Experience LCCA and Competition

Missouri

- Number of bids/job increased from 3.7 (2005) to 5.5 (2009)
- Paving Prices Decreased
 - Asphalt Decreased 5.1%
 - Concrete Decreased 8.8%

Louisiana

- Number of bids/job increased from 2.6 to 3.9 (post-Katrina)
- Engineer's Estimate vs. Bid
 - Alternate bids 9% below est.
 - Non-alternate 20% above est.
 - In 2008, LA saved \$62.5-million
 - Cost to Benefit Ratio of Money Saved vs. Additional Engr. Cost was 1000:1

Conclusions

- The use of LCCA provides roadway ownership cost.
- Life Cycle calculations are valid for concrete or asphalt.
- Fair design is vital to proper comparison.
- New design methods can predict pavement performance.
- Policy revisions can facilitate greater LCCA usage.
- Use of LCCA in combination with an alternate bid process can save significant taxpayer money.
- Maintenance solutions can benefit from LCCA calcs.

Questions???

Jerry W. Reece
Executive Director
NC Concrete Pavement Assn
<u>Jreece@pavementse.com</u>
336-508-5921

