


Department of Water Management

South Durham Water Reclamation Facility Upgrades and Strategies to Address Jordan Lake Rules

March 19, 2014

Outline

- History of South Durham WRF
- Strategies implemented to date
 - Optimization Study
- Planned upgrades to address rules
 - > 2011 Master Plan
 - Capital Improvements
- Cost of compliance

South Durham WRF - History

- Discharges into New Hope Creek
- Built in 1984 at a cost of \$19M
 - Capacity of 10 MGD.
- Upgraded in 1990 for phosphorous removal \$8M
- Expanded in 1995 for \$49M
 - Capacity increase to 20 MGD
 - Biological nitrogen removal
- Added sludge handling facilities in 1998 for \$7M
- By 2007 SDWRF had decreased N discharges by 56% and P by 80%
- Excellent compliance history

SDWRF Optimization Study

Completed in December 2009 at cost of \$24,000; recommendations implemented:

- Process changes based on calibrated BioWin™ Model
- Installation of on-line monitoring
- Minor physical improvements
- Investigate supplemental carbon addition
 - Successful pilot study at SDWRF
- Evaluate side stream removal and treatment
 - Successful Ostara pilot study

Nutrient Reductions to Date

Year	Nitrogen (lbs/yr)			Phosphorus (lbs/yr)	
	Current Limits	2016 Limits	SD discharge	2016 Limits	SD discharge
2013	334,900	185,345	220,445	14,053	7,009
2009	334,900	185,345	281,842	14,053	17,754

22% reduction in N 60% reduction in P

SDWRF – 2011 Master Plan

- Twenty year planning window
- Total cost of plan \$750,000 ~ 25% for N/P
- Recommendations to meet 2016 Jordan Lake Rules nutrient reductions
- Implementation of conventional technologies
 - Effluent Reuse
 - Enhanced Nutrient Removal through:
 - Supplemental Carbon Feed
 - Modifications to tanks and piping
 - Side stream treatment
 - > Future
 - Deep bed denitrification filters

Operational Costs at SDWRF to meet TP reduction

Total Phosphorous

- No new construction required
- Increase in chemical costs of approximately \$100,000/year
 - Requires year round chemical feed
- Additional biosolids handling costs estimated at \$15,000 - \$20,000/year

Estimated Costs at SDWRF to meet TN reduction

Department of Water Management

Total Nitrogen

- New construction required Estimate \$11.1M total, 2 phases
- Annual chemical costs estimated at \$1 M/year
 - \$0.5 Supplemental Carbon
 - \$0.5 pH adjustment
- Costs could increase significantly if new filters or more advanced technology required

SDWRF – Capital Improvements

- On-line nutrient monitoring 2012
 - > \$711K
- 2014 construction ~\$7.83M
 - AnitaMox side stream treatment (\$2.06M)
 - Structural improvements (\$130K)
 - Equipment upgrades (\$440K)
 - Supplemental Carbon Facilities (\$4.2)
 - Process modifications (\$1.0M)

SDWRF – Capital Improvements

- 2016 construction \$3.2M
 - Structural Improvements (\$2.16M)
 - Equipment upgrades (\$574K)
 - Process modifications (\$600K)

SDWRF – Total Costs for 2016 Compliance

- Phosphorus reduction
 - > \$120K (annual operational)
- Nitrogen reduction
 - > \$11.1M (construction)
 - Operational
 - \$1.0 M (annual chemicals)
 - ? Energy

Total cost = \$12.43M

Future Considerations

Additional side stream treatment process

- Ostara Nutrient Recovery (or similar)
 - Diverts filter press filtrate (liquid) with high concentrations of phosphorus to the Ostara reactor
 - Eliminates retreatment of high phosphorus waste stream at head of plant, reducing the loading by almost 90%
 - Allows biological process to focus on nitrogen removal

Summary

City of Durham is committed to:

- Investing in implementation of strategies to reduce Nitrogen and Phosphorus discharges into Jordan Lake
- Building on successes to date
- Meeting all regulatory requirements & deadlines
- Maintaining the water quality of Jordan Lake as a water supply source
 - Durham has a 10 MG allocation from Jordan Lake for drinking water purposes
- Using rate payer dollars resourcefully

