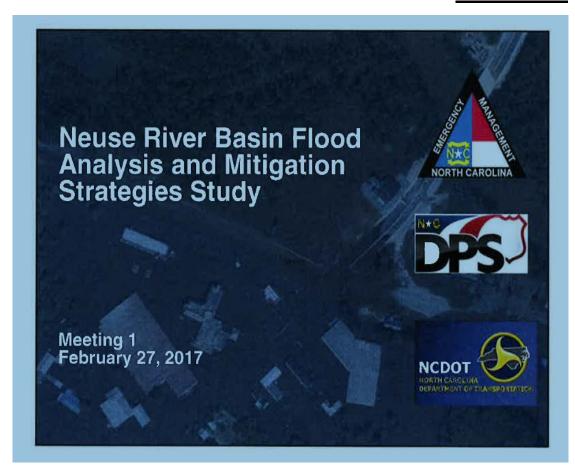
HOUSE SELECT COMMITTEE ON DISASTER RELIEF

APRIL 16, 2018 - 2:00 PM

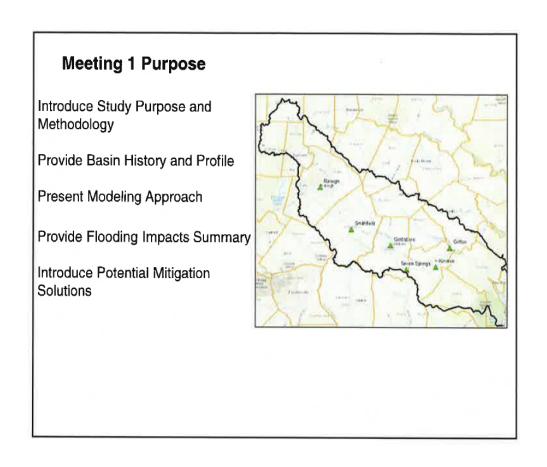

U.S. 70 CORRIDOR COMMISSION NEUSE RIVER FLOOD MITIGATION

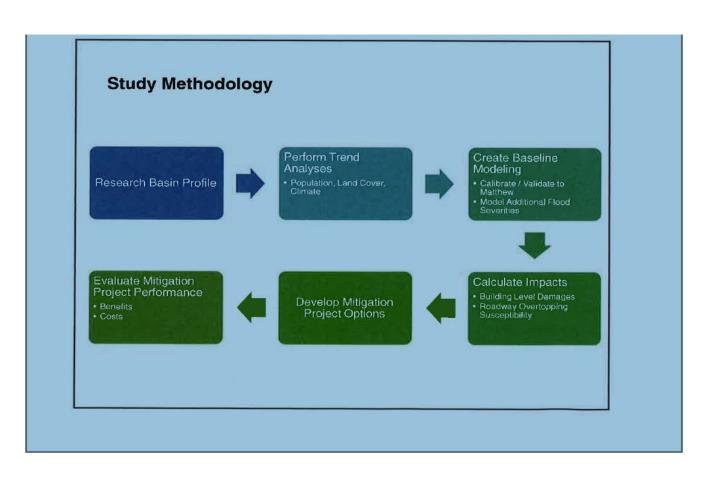
Currently there are two (2) parallel studies on-going as a follow-up to Matthew.

North Carolina Emergency Management – Risk Management Division is charged with Flood Analysis and Mitigation Strategies for three (3) river basins: Tar, Neuse & Lumber. All of these are equally important, but I am personally involved through the U.S. 70 Corridor Commission with the Neuse River Study. Engineering Consultant, AECOM has been employed to aid in their studies. NCDOT has initiated a study of the U.S. 70 Corridor along the Neuse River Basin and have engaged the services of N.C. State University.

SLIDE 1 The first meeting of the NCEM – Risk Management was held on February 27, 2018. AECOM graciously provided this slide which defines the process and purpose of the study – and while I am giving credit, I will also give them credit for the error. The date is February 27, 2018 not 2017. I did not think you wanted to hear that another year passed before action was taken.

Flood Study Analysis and Mitigation – Purpose / Partners

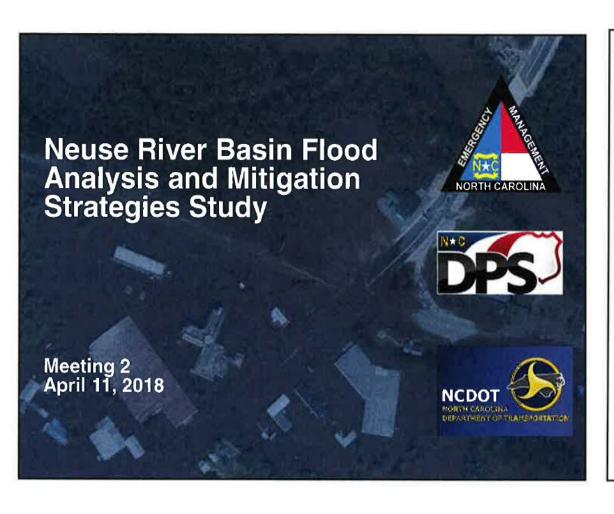

The primary purpose / objectives of this project is to:


- Research primary causes and magnitude of flooding
- Calculate the impacts of flood frequencies on: Built Environment; Living Environment; and Economy.
- · Identify and Assess Mitigation Strategies
- Assess short and long term benefits to costs of Mitigation Strategies
- Provide Potential Solutions

The Study / project utilizes the following partners to widely communicate results and gain valuable input and feedback:

- NC DPS Emergency Management
- NC Department of Transportation
- · Impacted County Governments and Municipalities
- ACOE
- · NC Department of Commerce
- · NC Department of Agriculture and Consumer Services
- Engaged Stakeholders and Non-Profits
- Informed: Congressional and Legislative Representatives

SLIDE 2 The second slide states the Purpose and Study Methodology



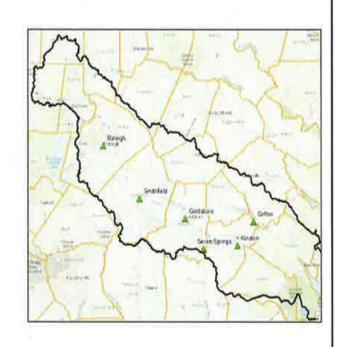
- The primary purpose of the Three Studies is to:
- 1. Research primary causes and magnitude of flooding.
- 2. Calculate the impacts of flood frequencies on the built and living environments, and on the economy.
- 3. Identify and assess possible mitigation strategies.
- 4. Assess short and long-term benefits to costs of each possible mitigation strategy.
- 5. Provide potential solutions based on such analysis.

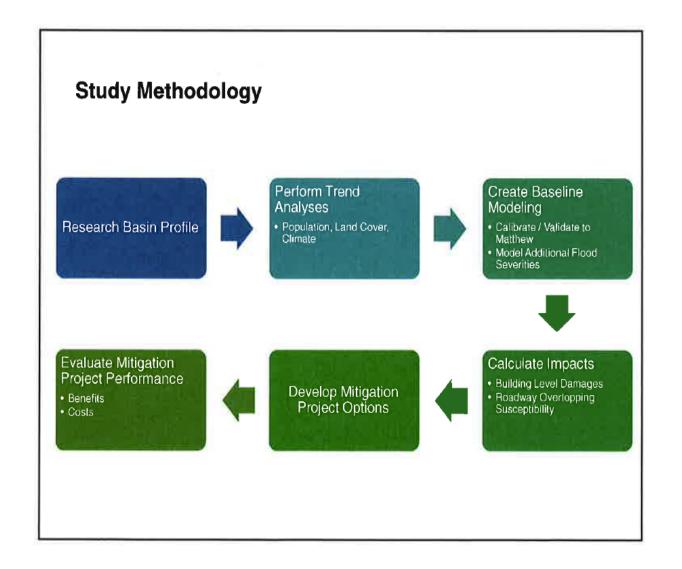
- Eleven (11) mitigation options are initially considered for each of the basins. Several have been further analyzed. These include:
- New wet and dry detention structures
- Channel diversion, dredging;
- Roadway Elevation/Clearing Spanning
- Community Buyouts/Elevation/Relocation

The second meeting of the NCEM was last week on April 11.

Flood Study Analysis and Mitigation – Purpose / Partners

The primary purpose / objectives of this project is to:

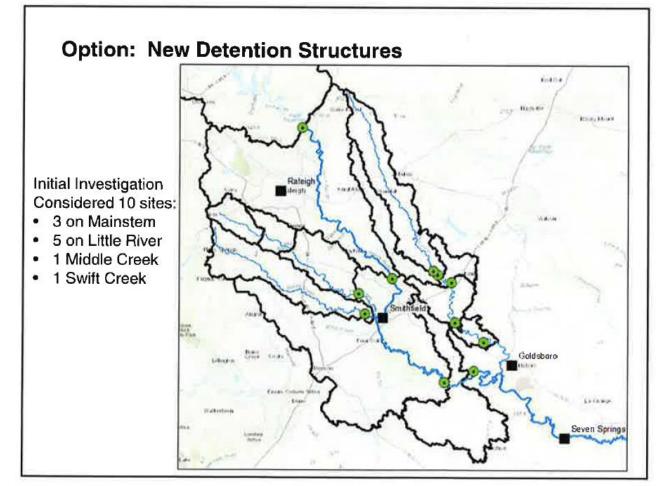

- Research primary causes and magnitude of flooding
- Calculate the impacts of flood frequencies on: Built Environment; Living Environment; and Economy
- · Identify and Assess Mitigation Strategies
- Assess short and long term benefits to costs of Mitigation Strategies
- Provide Potential Solutions


The Study / project utilizes the following partners to widely communicate results and gain valuable input and feedback:

- NC DPS Emergency Management
- NC Department of Transportation
- Impacted County Governments and Municipalities
- Army Corps of Engineers
- NC Department of Commerce
- NC Department of Agriculture and Consumer Services
- Engaged Stakeholders and Non-Profits
- Informed: Congressional and Legislative Representatives

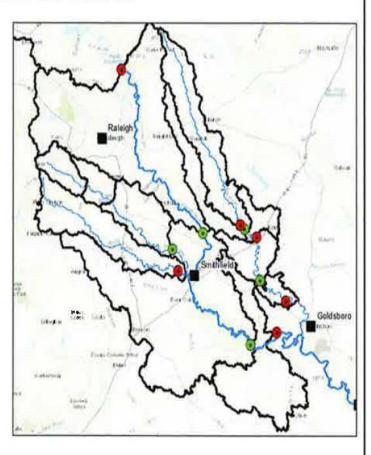
Meeting 2 Purpose

- Overview Mitigation Strategies Considered
- Present Specifics of Mitigation Strategies Analyzed
- Present Benefit/Cost Results of Mitigation Strategies Analyzed
- Provide Justification for Mitigation Strategies not Pursued



Mitigation Options Master List

- New Detention Structure(s)
- Existing DetentionRetrofit/Enhancement
- 3. Offline Storage
- Channel Modifications
 - Diversion
 - 2. Dredging
 - 3. Lining
- New Embankment Structure
- Existing LeveeRepair/Enhancement


- Roadway Elevation / Clear Spanning
- 8. Large Scale Wet Flood Proofing
- Community
 Buyouts/Elevation/Relocation
- 10. Land Use / Impervious Restrictions
- 11. River Corridor Greenspace Implementation

Option: New Detention Structures

Analyzed 4 scenarios with best feasibility including dams at:

- Wilsons Mills
- NU-2
- Swift Creek
- Beulahtown
- Bakers Mill

New Detention Structures -- Wet Detention

Wet Pond: Dam creates a permanent pool with flood storage above the pool but below the spillway. Considerations include:

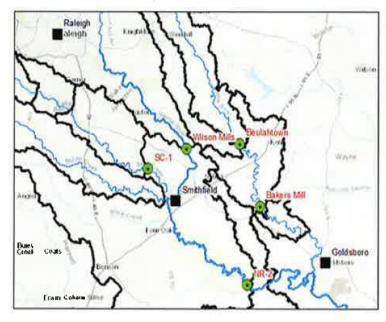
- Recreation including fishing, boating, picnic areas, camping
- Potential for water supply to benefit municipal or agricultural needs
- Increased quality of life for surrounding population
- Increased property values adjacent to and in vicinity of the lake
- Eliminates wetlands in favor of open water. Wetland offset would be required
- Sedimentation is a concern

U.S. Army Corps of Engineers

New Detention Structures – Dry Detention

Dry Pond: No permanent pool. Only detains water during storm events and is typically evacuated in a controlled manner within a set amount of time.

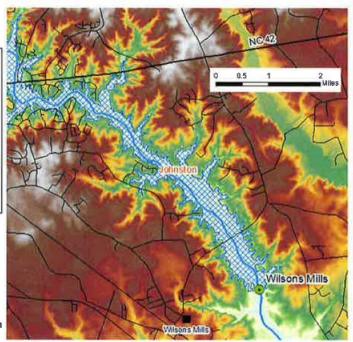
- Allows for more flood storage
- Property can be available for other uses, e.g. soccer fields, open space parks, or lease back for agricultural purposes
- Maintains river connectivity and not as disruptive to natural condition as wet detention. This often results in less issues with permitting
- Less impact on fish and aquatic species
- Significantly less issues with sediment maintenance


New Detention Structures – Possible Scenarios

Scenario 1: Dry dam at Wilsons Mills and Bakers Mill, Wet dam at Beulahtown

Scenario 2a: Dry dam on mainstem at NR-2 Scenario 2b: Wet dam on mainstem at NR-2

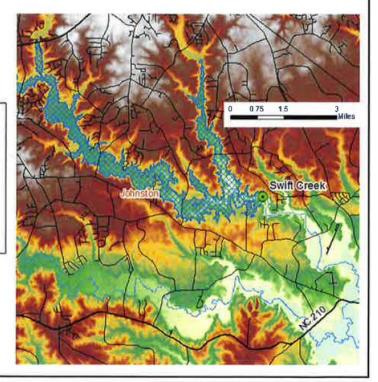
Scenario 3: Dry dam at Wilsons Mills, Wet dams at Beulahtown and SC-1


Scenario 4: Dry dams at Wilsons Mills, Beulahtown, and SC-1

New Detention Structures - Wilson's Mills

Wilson's Mills

- In 1965 USACE Study
- Protection for Smithfield
- Heavily developed area
- 1.0 miles of road impacted
- 63 or 97 buildings acquired depending on dam configuration
- D.A. Approx. 400 sq. mi.*



*Does not include area above Falls Lake Dam

New Detention Structures - Swift Creek

Swift Creek

- Provides some protection
- for Smithfield
- · Heavily developed area
- · Rapidly developing area
- 1.0 miles of road elevated
- · 65 buildings acquired
- D.A. Approx. 140 sq. mi.

There will be three stakeholder meetings to gather relevant information from key community leaders and municipal staff about flooding and flood-related impacts in our communities.

The workshops will include presentations to review past flooding events, provide an update for on-going efforts of NC Emergency Management and to outline the proposed objectives and timeline for the study and implementation of flood mitigation measures.

SLIDE 11A

The workshops are scheduled as noted:

Kinston NC DOT Flood Study Stakeholder Meeting

When: Tuesday, April 17, 2018 – 9:00 am – 11:30 am Eastern Time

Where: Global Transpark

3800 Hwy 58 North

Kinston, NC 28504-7928

Room 148C

Smithfield NC DOT Flood Study Stakeholder Meeting

When: Monday, April 23, 2018 – 9:00 am – 11:30 am Eastern Time

Where: Town Hall Council Chambers

350 East Market Street

Smithfield, NC 27577

Goldsboro NC DOT Flood Study Stakeholder Meeting

When: Monday, April 23, 2018 – 2:00 pm – 4:30 pm Eastern Time

Where: Changed: Walnut Building, Room 101

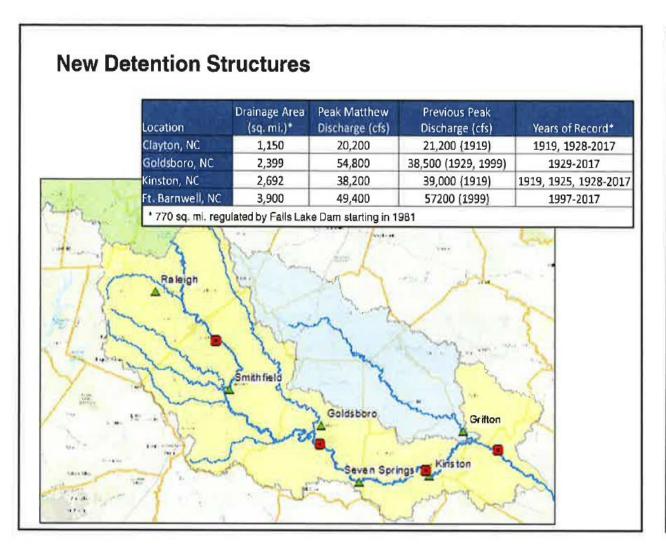
Wayne Community College

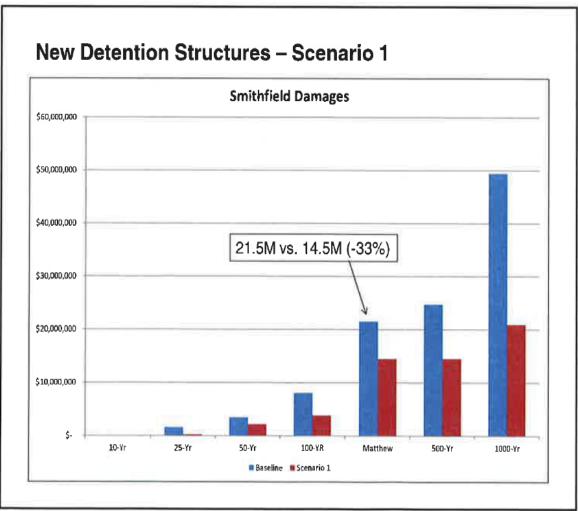
3000 Wayne Memorial Drive

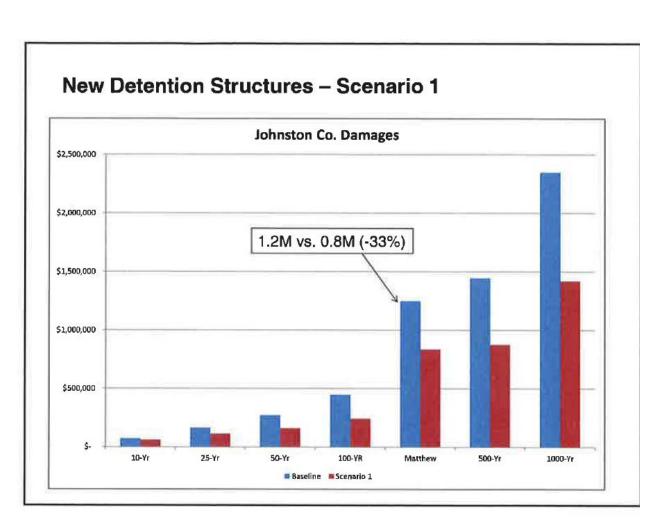
Goldsboro, NC 27534

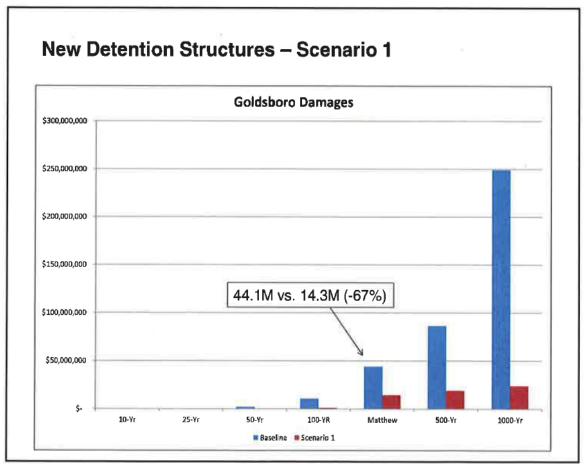
• The final report from this study group is scheduled the week of April 25.

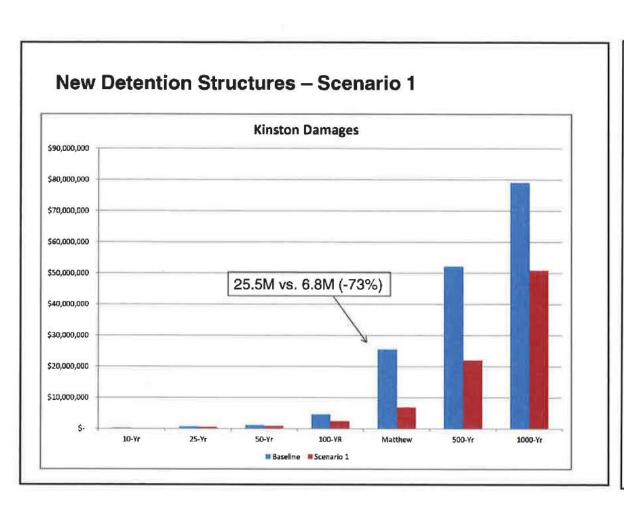
New Detention Structures - Scenario 1

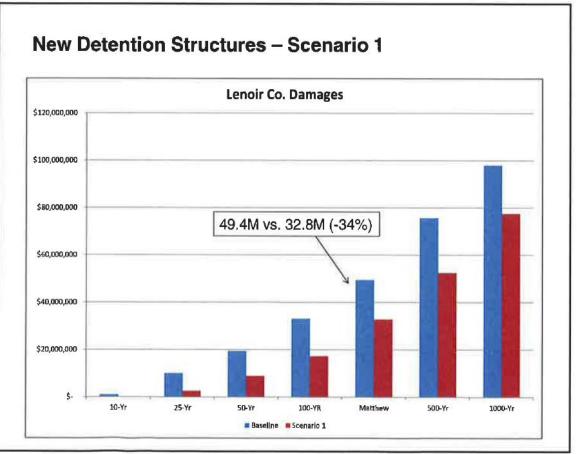

Neuse Basin Study Area - Baseline				
		Total Damages		
Event	Buildings	Direct	Direct +Indirect	
10-Yr	279	\$1,965,000	\$8,570,000	
25-Yr	858	\$16,019,000	\$39,222,000	
50-Yr	1,676	\$34,004,000	\$78,840,000	
100-Yr	2,793	\$74,953,000	\$169,540,000	
Matthew	3,662	\$186,413,000	\$439,901,000	
500-Yr	5,572	\$328,463,000	\$739,393,000	
1000-Yr	6,809	\$625,852,000	\$1,491,185,000	

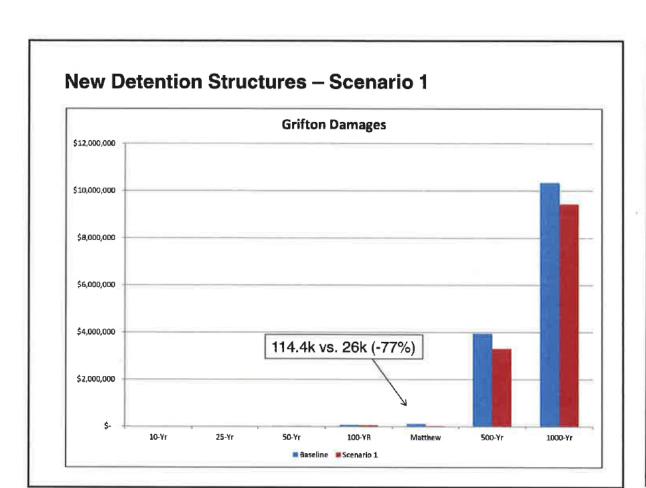

Neuse Basin Study Area – Scenario 1				
13.54		Total Damages		
Event	Buildings	Direct	Direct +Indirect	
10-Yr	159	\$377,000	\$630,000	
25-Yr	453	\$4,504,000	\$13,118,000	
50-Yr	960	\$15,576,000	\$36,656,000	
100-Yr	1,772	\$33,551,000	\$80,378,000	
Matthew	2,393	\$90,091,000	\$219,380,000	
500-Yr	4,224	\$170,148,000	\$384,380,000	
1000-Yr	5,096	\$273,751,000	\$624,644,000	

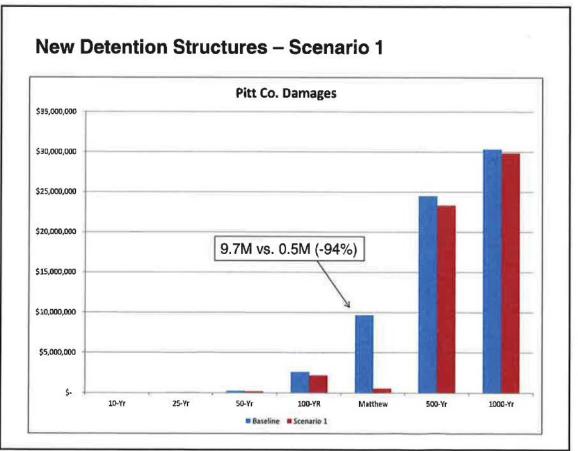

New Detention Structures - Scenario 1

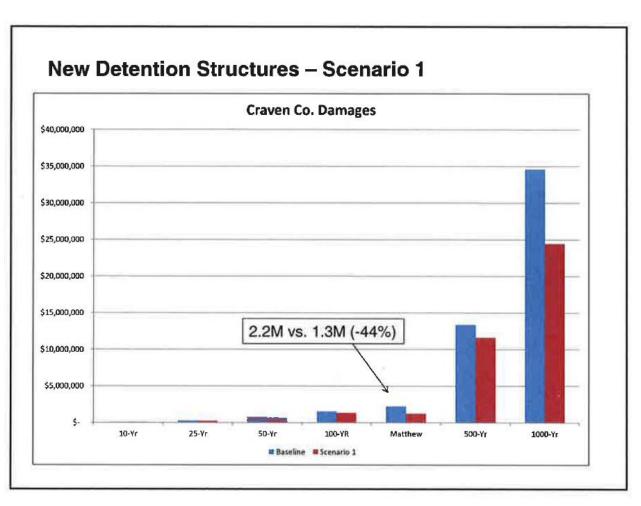

Neu	se Basin S	cenario 1 Loss	ses Avoided	
		Total Damages Avoided		
Event	Buildings	Direct	Direct +Indirect	
10-Yr	120	1,588,000	7,940,000	
25-Yr	405	11,515,000	26,104,000	
50-Yr	716	18,428,000	42,184,000	
100-Yr	1,021	41,402,000	89,162,000	
Matthew	1,269	96,322,000	220,521,000	
500-Yr	1,348	158,315,000	355,013,000	
1000-Yr	1,713	352,101,000	866,541,000	


Neuse Basin Scenario 1 Losses Avoided				
		Percent Damage Reduction		
Event	Buildings	Direct	Direct +Indirect	
10-Yr	43%	81%	93%	
25-Yr	47%	72%	67%	
50-Yr	43%	54%	54%	
100-Yr	37%	55%	53%	
Matthew	35%	52%	50%	
500-Yr	24%	48%	48%	
1000-Yr	25%	56%	58%	









New Detention Structures - Scenario 1

- Costs Considered: Property Acquisition, Design/Construction, Road Impacts, Environmental Impacts, Operation and Maintenance
- Benefits considered: Direct and Indirect losses avoided, Recreational benefits, Land leasing potential
- Items for future consideration: Municipal and agricultural water supply, permitting, losses avoided for agriculture and properties on Little River.

	Wilsons Mills	Beulahtown	Bakers Mill
Property Acquisition	\$ 27,822,000	\$ 32,031,000	\$ 15,075,000
Design/Construction	\$ 23,200,000	\$ 24,110,000	\$ 20,500,000
Evnironmental Impacts	\$ 0	\$ 11,114,000	\$0
Maintenance/yr.	\$ 20,000	\$ 150,000	\$ 20,000
Road Impacts	\$ 10,236,000	\$ 23,381,000	\$ 8,288,000
Property Value Increase	\$ 0	\$ 10,681,000	\$ 0
Tax Revenue Change/Yr.	\$ (-228,000)	\$ (-187,000)	\$ (-73,000)
Lease Benefit/Yr.	\$ 78,000	\$ 220,000	\$ 149,000

Re	creation Benef	ation Benefits			
Site	30Y Benefit				
Beulahtown	\$ 43,900,000	\$ 50,900,000			

		New Detent	ion Structures - Si	cenario 1			
	Costs		Losses Avoided		Other Benefit	Benefit Cost Ratio	
Time Horizon	Initial Cost	Maintenance	Direct	D+1		Direct	D + I
30 Year	\$ 195,757,000	\$ 5,700,000	\$ 71,934,000	\$ 168,448,000	\$ 53,351,000	0.62	1,10
50 Year	\$ 195,757,000	\$ 9,500,000	\$ 119,890,000	\$ 280,746,000	\$ 59,531,000	0,87	1.66

The other Flood Mitigation Study initiated by N.C. Department of Transportation in partnership with N.C. State University as scheduled:

- Spring 2018 Characterizing basin, inventory of infrastructure, stakeholder outreach
- Summer/Fall 2018 Conduct local modeling, validation, progress report
- Winter 2019 Access abatement measures, stakeholder outreach
- Spring 2019 Final Report

U.S. ARMY CORPS OF ENGINEERS 1965 STUDY (MAY 17, 1965) NEUSE RIVER BASIN

Purpose

FLOOD CONTROL
WATER SUPPLY
RECREATIONAL USES

Cost Benefit Analysis Ratio 3.3 Now Best Is 1 or Lower 53 years of Development Expanded Impervious Areas

Recommends 13 Dams/Reservoirs
Included Falls of Neuse Dam (Water Supply)
Only 2 constructed: Falls of Neuse & Buckhorn Reservoir (Wilson County)
Study Area Map Attached

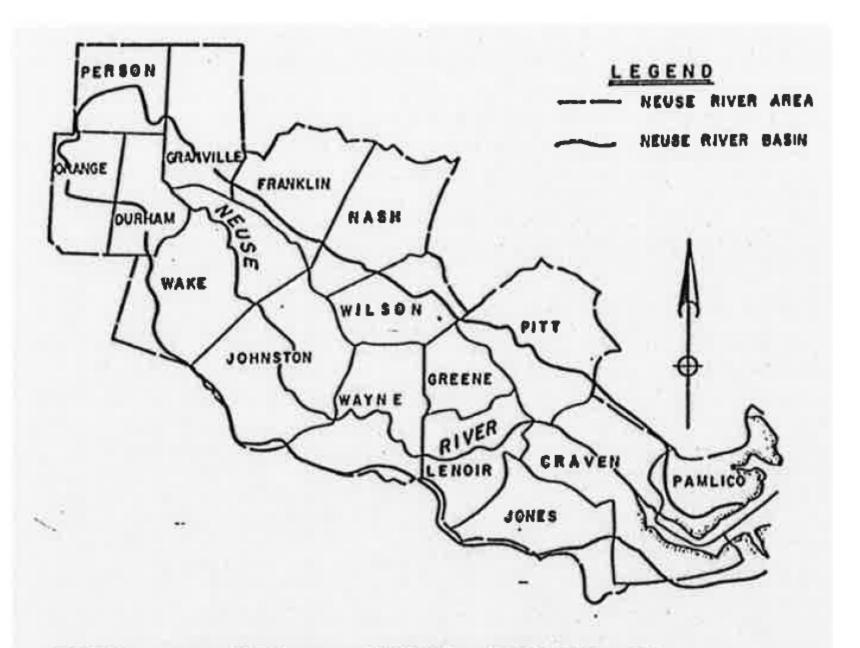


FIGURE 1. NEUSB RIVER AREA IN RELATION TO NEUSE RIVER BASIN

Slides, Graphs & Research Data

Courtesy of:

North Carolina Emergency Management – Risk Management

&

AECOM, Consulting Engineers

THANK YOU!