

PFAS MITIGATION AND ELIMINATION RESEARCH AND DEVELOPMENT

Legislative Update to House Regulatory Reform Committee

Tuesday, March 4, 2025

collaboratory science. policy. solutions.

Jeffrey Warren, PhD

Executive Director, NC Collaboratory Professor of the Practice, Department of Public Policy

ABOUT US

Established in 2016 by the North Carolina General Assembly, the Collaboratory supports cross-sector research partnerships that seek to transform academic research into evidence-based solutions for environmental, health, and societal challenges faced by people in North Carolina.

Codified as Article 31A of NCGS 116-255

North Carolina Collaboratory | Legislative Update

TALK OVERVIEW

PFAS Testing Network

NC Pure

PFAS TESTING NETWORK

Four areas of technology development:

01 Remediation

02 Destruction

03 Sensing / Identification

04 Replacement

AFFF PROGRAM

North Carolina Collaboratory Legislative Update In partnership with:

1st State with an AFFF deployment database

1st

State with a free-standing firefighting foam division within OSFM

1st

State to undertake a firefighting foam take-back program of this magnitude

1,200+ fire departments, ~60,000 gallons of AFFF

Supercritical Water Oxidation (SCWO) Hydrothormal

Hydrothermal Alkaline Treatment (HALT)

Plasma-Based Treatment Reductive Defluorination (PRD)

DESTRUCTION TECHNOLOGIES

REMOVING FOREVER CHEMICALS (PFAS) FROM NORTH CAROLINA WATERS

Prof. Orlando Coronell

Environmental Sciences and Engineering

Prof. Frank Leibfarth

Chemistry

The University of North Carolina at Chapel Hill

NOVEL SORBENTS AS A HOLISTIC PFAS SOLUTION

Our Technology

Our Sorbents Demonstrate Higher Affinity for PFAS

[Resin] = 10 mg/L	$[PFAS]_0 = 1 \ \mu g/L$
GAC: Filtrasorb 400	[NaCl] = 200 mg/L
PAC: Picahydro MP23	[Humic Acid] = 20 mg/L
IX: PFA 694E	pH = 6.4
	pri – 0.4

9

Our Sorbents Demonstrate Higher Affinity for PFAS

[Resin] = 10 mg/L

IX: PFA 694E

GAC: Filtrasorb 400

PAC: Picahydro MP23

 $[PFAS]_0 = 1 \ \mu g/L$

[NaCl] = 200 mg/L

[Humic Acid] = 20 mg/L

pH = 6.4

Improved Performance

DOES THIS END AS AN ACADEMIC ADVANCE?

We published a paper and submitted a patent application... is that the end?

collaboratory science. policy. solutions.

Question posed by Legislators from New Hanover & Brunswick Counties: What would it take to test this in our water treatment plants?

- **NC Pure** is developing and evaluating novel materials to remove PFAS from water
- This includes upscaling manufacturing and performance testing of novel sorbents alongside benchmark commercial sorbents

NC PURE PROJECT TEAM

Prof. Frank Leibfarth Co-Project Leader

Dr. Nick Chew Water Process Engineer

Lead Research Chemist

Dr. Alexander Gorzalski **Engineering Consultant**

Sontia Gaither Synthetic Chemist

Analytical Chemist

Emily Watts **Chemical Engineer**

Abigail Sveen Water Process Scientist

Graham Parker Graduate Student

Dr. Jim Bray **Engineering Consultant**

Elias Arroyo **Research Scientist**

13

HYPOTHESIS-DRIVEN RATIONALE IMPROVES PERFORMANCE

Generation II:

Fluoroolefin-vinyl ether- based lonic Fluorogels

Accessible starting materials at competitive price point

Bench-scale column testing revealed lower performance under realistic conditions

Scale-up beyond 50-gram scale proved challenging

Generation III:

Functionalized Novel Sorbents

Accessible starting materials at competitive price point

Modular synthetic platform enables quick iteration & scale-up

High-performing in real waters

Non-fluorinated backbone

14

Generation I:

Perfluoropolyether-based lonic Fluorogels

High-performing at the bench scale

Regenerable, broad-spectrum PFAS removal performance

Challenging to scale up due to environmental, cost, & supply chain concerns

PILOT-SCALE TESTS \star = pilot sites

- Initial results indicate NC Pure sorbents last 40% longer than a commercial ion-exchange resin for short chain PFAS
- When paired with GAC at Sweeny, the combination extends the time to breakthrough (i.e., lifetime) of GAC
- We are testing on-site regeneration, which could enhance sustainability and potentially reduce lifetime cost

CAPACITY FOR SHORT-CHAIN PFAS OF CONCERN IN EASTERN NC

- After 30 days, NC Pure Sorbents had similar capacity to commercial ion exchange resins (and much more than GAC)
- After 100 days, commercial ion exchange resins had *released* most PFAS back into the water
- After 100 days, NC Pure sorbents continued removing PFAS

Sorbenta, Inc.

Removing forever chemicals from our waters

Our vision: manufacture and supply the world's best sorbents for PFAS removal and concentration

Frank Leibfarth Co-Founder Chemistry Lead

Orlando Coronell Co-Founder Engineering Lead

Robin Weitkamp Co-Founder & Advisor 30-year chemical industry exec

Unique Patent License allocation of ALL gross revenue:

- 10% to the General Fund
- 10% to Collaboratory to fund further PFAS research
- 40% to UNC
- 40% to the inventors

Irene Mulloy Formulations advisor Polymer industry scientist

Alex Gorzalski Applications advisor 10-yr water sector experience

- Raised >\$400,000 non-dilutive funding
- Have lab space to conduct R&D

THANK YOU & QUESTIONS

Collaboratory.unc.edu

Collaboratory@unc.edu

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL